Читайте также: |
|
Дано n +1 точек p 0, p 1, p 2,... и p n в пространстве - контрольные точки. Кривая Безье, описываемая этими точками -
,
где коэффициенты, коэффициенты Безье, равны:
Таким образом, точка, соответствующая u на кривой Безье - это "среднее взвешенное" между всеми точками, где вес каждой точки - это коэффициент Bn , i (u). Отрезки p 0 p 1, p 1 p 2,..., p n -1 p n, называются сегментами ["legs" - ноги 8-) ], они образуют контрольную ломаную. Некоторые авторы называют эту ломаную контрольным многоугольником. Функции Bn , i (u), 0 <= i <= n, обычно называют функциями базиса[basis] Безье.
Заметьте, что u в пределах [0,1]. Поэтому все коэффициенты неотрицательны. Далее, так как и u, и i могут равняться 0, как и 1 - u и n - i, примем неопределенность 00 равной 1. Далее показана кривая Безье, построенная по 11 контрольным точкам, для синей точки на кривой u =0.4. Как видно с рисунка, кривая более или менее следует за ломаной.
Важны следующие свойства кривых Безье:
На рисунке слева кривая Безье, построенная по пяти контрольным точкам. Ее коэффициенты Безье - это функции от u, показаны на рисунке справа. Рисунок показывает u =0.5 и пять коэффициентов Безье. А вертикальная линия показывает деление 1 на пять интервалов, отсюда название деление единства. Заметьте, цвета в делении те же, что и у коэффициентов Безье.
Так как все коэффициенты Безье в пределах от 0 до 1, каждый из них можно представить как вес при вычислении среднего взвешенного. Точнее, можно сказать "чтобы вычислить p (u), берем вес Bn,i (u) для контрольной точки p i и суммируем их все."
Это свойство важно, потому что мы гарантированно знаем, что полученная кривая будет в понятной и вычисляемой области и не выйдет за ее пределы. В какой-то мере, построенная кривая очень предсказуема.
Взгляните на рисунок. Желтая линия пересекает кривую 3 раза, а ломаную 7 раз; фиолетовая линия пересекает кривую 5 раз, ломаную 7 раз; голубая линия пересекает и кривую, и ломаную дважды.
Если кривая пространственная, достаточно заменить "прямую" на "плоскость". Есть особые случаи; тем не менее, несложно придумать такую схему подсчета, чтобы она подходила для всех случаев.
Так что же это за свойство такое и причем тут изменчивость? Это свойство говорит о том, что сложность (т.е. повороты и изгибы) кривой не сложнее, чем у ее контрольной ломаной. Взгляните на рисунок выше - ломаная запутаннее кривой, построенной по ней.
Дата добавления: 2015-10-29; просмотров: 292 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Рациональные Формы Стандартных Кривых | | | Перемещение Контрольных Точек |