Читайте также:
|
|
Задача 196. При решении задачи на заполнение таблицы для мешка, чтобы не запутаться, лучше сразу выбрать некоторую стратегию учёта фигурок. Одна из стратегий описана на листе определений. Вторая стратегия состоит в следующем. Берём любую фигурку из мешка, например красный лимон. Обводим в мешке все красные лимоны красным, считаем, сколько фигурок обведено красным, и заполняем клетку таблицы «красные лимоны». Теперь выбираем любую не обведённую фигурку в мешке, например зелёное яблоко. Обводим все зелёные яблоки новым цветом и считаем, сколько фигурок мы обвели, заполняем клетку «зелёные яблоки». Так продолжаем до тех пор, пока все фигурки в мешке не окажутся помеченными (если цвета линий обводки в мешке начнут повторяться, можно начать помечать фигурки галочками).
Задачи 197. При построении мешка по таблице лучше всего использовать клетки таблицы в определённом порядке. Например, начиная с верхней строки слева направо. Кроме того, можно помечать клетку таблицы, которую уже использовали. Так берём первую цифру в первой строке: кладём в мешок одну красную треугольную бусину и помечаем первую клетку таблицы галочкой. Дальше переходим ко второй цифре в первой строке и т. д., пока не дойдём до последней цифры в последней строке.
Задача 198. Решений здесь много. При построении цепочки очень важно помнить, что для истинности утверждения необходимо, чтобы оно имело смысл, то есть каждая фигурка, о которой идёт речь, должна встречаться в цепочке ровно один раз.
Задача 199. Эту задачу можно решать методом проб и ошибок — инструмент лапка позволяет реализовывать многочисленные пробы достаточно легко. Однако пробы можно существенно сократить, если внимательно прочитать условие задачи и сделать некоторые выводы. Например, в условии сказано, что шестая бусина после красной должна быть жёлтой. В нашей цепочке всего 7 бусин, значит, соблюсти данное условие можно только в том случае, если поставить красную бусину первой в цепочке, а жёлтую бусину (пока любую) последней. Теперь проанализируем другую часть условия и поставим зелёную бусину предпоследней, а любую треугольную бусину поставим второй в цепочке. Остальные бусины могут при этом стоять на любых местах.
Задача 200. В целом эта задача аналогична компьютерной задаче 197, но таблица здесь несколько больше. Если учащийся при построении мешка будет затрудняться или допускать ошибки, посоветуйте ему помечать использованные клетки таблицы (подробней см. комментарий к задаче 197).
Задача 201. Задача на повторение сравнения фигурок наложением.
Задача 202. Эта задача является частично лингвистической, поскольку, кроме договорённостей, введённых в нашем курсе, здесь работают языковые (неформальные) соображения. Например, в задаче речь идёт только о словах русского языка. В отличие от понятия «слово», введённого в нашем курсе как любой цепочки букв, понятие «слово русского языка» крайне сложно объяснить формально и ещё сложнее определить в спорных случаях, является ли цепочка словом русского языка или нет. Лингвистическая направленность задачи порождает некоторые трудности с поиском формального алгоритма решения. Действительно, можно предложить детям сначала составить все возможные цепочки из данных букв, например из букв слова АНИС, а затем из всех этих цепочек выбрать ту, которая является словом русского языка. Но это довольно долгий путь. Он может осложняться дополнительно тем, что ребёнок по каким-то причинам вообще не знает слова САНИ (то есть оно для ребёнка словом русского языка не является). Все эти рассуждения мы приводим не для того, чтобы убедить вас, что эта задача очень сложная. Наоборот, вы убедитесь, что некоторые дети решили её очень быстро, буквально за несколько секунд. Тем не менее, наверняка, найдутся те, кто застрянут на некоторых (или даже на всех) словах. Не надо относиться к этому слишком серьёзно, учитывая приведённые выше соображения. То, что ребёнок не решает данную задачу не значит, что он не знает материал курса. Относитесь к этой задаче на треть как к развлекательной (на сообразительность), на треть как к языковой и лишь на треть как к информационной.
Задача 203 (необязательная). Как всегда в задачах, которые содержат ложные утверждения, дети либо действуют методом проб и ошибок, либо строят отрицания утверждений. Во втором случае у них получается следующий набор утверждений, которые должны быть истинными: «В цепочке кошка идёт не позже белки», «В цепочке следующая фигурка после рыбы — не бабочка», «В цепочке пятая фигурка с конца — не заяц». При любом способе решения дети обязательно должны учесть все условия, при которых данные утверждения имеют смысл, а именно: в цепочке должна быть ровно одна кошка, ровно она белка, ровно одна рыба, кроме того, рыба должна стоять в цепочке не последней и в цепочке должно быть не меньше пяти фигурок.
Компьютерный урок «Таблица для мешка». 2 часть
Дата добавления: 2015-10-31; просмотров: 97 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение задач 186—199 из учебника | | | Решение компьютерных задач 204—210 |