Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Мешки-векторы

Ребята уже знакомы с мешками и одномерными таблицами для мешков. Надеемся, что работа с данными математическими объектами не вызовет у учащихся особых трудностей. Однако для математики их введение оказалось достаточно важным шагом. Дело в том, что числа, прежде всего натуральные, очень удобны для измерений, например, времени (скажем, в секундах), или веса (в граммах), или пройденного расстояния (в метрах). Но если мы хотим указать, не сколько мы прошли, а куда пришли, то ситуация становится сложнее. Нам приходится указывать два «измерения» — два числа. Это похоже на то, как мы указываем положение в городе (например, говорим: «угол Ленина и Розы Люксембург») или поле на шахматной доске (например, e2). Самый распространённый в математике способ состоит в том, что на поверхность наносится сетка, как на бумаге в клетку. Если взять лист клетчатой бумаги, то с каждой клеткой на нём можно сопоставить два натуральных числа. Одно из этих чисел означает, сколько шагов надо сделать из нашей клетки, чтобы оказаться у левого края листа, а другое — сколько шагов надо сделать, чтобы добраться до нижнего края. Два таких числа называют координатами клетки, их нельзя поменять местами — это не просто мешок, в котором лежат два числа, а упорядоченная пара (цепочка!), о которой мы договорились, что первое число всегда расстояние до левого края листа, а второе — расстояние до нижнего края.

Тем не менее координаты можно сложить в мешок. Для этого понадобятся бусины двух типов: бусина одного типа будет обозначать один шаг влево, а бусина другого — один шаг вниз. Какими именно будут бусины — это вопрос договорённости. Например, квадратными и круглыми или синими и зелёными. А могут быть карточки, на которых написано «влево» и «вниз». Таким образом, каждой клетке на листе можно сопоставить мешок, в котором будет сколько-то бусин «влево» и сколько-то бусин «вниз».

Построив одномерную таблицу такого мешка, получим пару чисел, аналогичную координатам: ведь в таблице для каждого числа ясно, число каких именно карточек оно обозначает. Получится так называемый вектор. Конечно, вектор может иметь не только два, но и больше параметров (соответствующая цепочка чисел может быть длиннее). И в нашем мешке могут тоже лежать бусины многих типов. В отличие от множества в мешке (мультимножестве) может быть несколько объектов одного типа. Значит, в таблице для мешка будут не только единицы и нули.

С понятия «вектор» начинается изучение науки, которую называют аналитической геометрией. Данное понятие лежит в фундаменте всей физики и многих разделов математики.

Тема данного урока — двумерные таблицы для мешков. С научной точки зрения двумерные таблицы — это следующая по сложности структура, набор векторов. Конечно, мы не будем детей сейчас нагружать этой сложной терминологией. Достаточно того, что они научатся сортировать и классифицировать элементы мешка по двум признакам и аккуратно заполнять таблицу.

Лист определений «Таблица для мешка (по двум признакам)»

На этом уроке ребята знакомятся с таблицей для мешка нового вида. До настоящего момента детям встречались лишь такие таблицы, в которых все элементы мешка делятся по одному признаку. Такие таблицы можно называть одномерными. Например, бусины в мешке можно делить по форме и составлять соответствующую таблицу. Можно составить другую одномерную таблицу, разделив все бусины по цветам. Наконец, можно составить третью одномерную таблицу для мешка бусин, посчитав число одинаковых бусин каждого вида (определённой формы и цвета). Даже если бы мы в одной задаче составили все три таблицы, то задача изменилась бы только количественно, ведь составляя каждую таблицу мы все равно принимаем во внимание только один признак, то есть все признаки мы рассматривали до настоящего урока по отдельности.

На этом уроке ситуация меняется качественно. Так, составляя таблицу на листе определений, мы одновременно принимаем во внимание два признака бусин — их форму и цвет. В результате в последней таблице листа определений каждое число указывает нам, сколько в мешке лежит бусин данной формы и данного цвета. В этом примере вид формы мы пишем по горизонтали (в названиях столбцов), а цвет — по вертикали (в названиях строк). Это совершенно не принципиально, можно делать и наоборот.


Дата добавления: 2015-10-31; просмотров: 138 | Нарушение авторских прав


Читайте в этой же книге: Решение компьютерных задач 143—149 | Решение компьютерных задач 150—156 | О названиях и начертаниях букв | Решение задач 144—159 из учебника | Решение компьютерных задач 157—167 | Решение задач 12—19 из тетради проектов | Решение задач 160—176 из учебника | Решение компьютерных задач 173—180 | Решение компьютерных задач 181—187 | Решение задач 177—185 из учебника |
<== предыдущая страница | следующая страница ==>
Решение задач 188 — 195| Решение задач 186—199 из учебника

mybiblioteka.su - 2015-2024 год. (0.006 сек.)