Читайте также:
|
|
Задача 173. В этой задаче ребята выполняют разбиение мешка так, как это выглядит при разбиении телесного мешка предметов на две части. В ходе этой работы дети раскладывают все предметы из одного мешка по двум другим мешкам. В аналогичных практических задачах учащиеся могут перекладывать предметы руками, в компьютерных задачах на разбиение мешка работают инструментом лапка. В данном случае разбиение не является произвольным, а подчиняется условию: все гласные буквы должны оказаться в одной части мешка, все согласные — в другой (знаков в мешке Б нет). С кем-то из ребят в процессе решения задачи, возможно, придётся вспомнить, какие буквы в русском языке считаются гласными, а какие — согласными.
Задача 174. Для кого-то эта задача может оказаться технически сложной. Проблема в том, что фигурок в мешке много и они очень похожи, кто-то из детей здесь, возможно, просто запутается. Самый простой способ решения данной задачи — искать тройки одинаковых фигурок и сразу раскрадывать фигурки каждой тройки по трём разным мешкам. Если с поиском очередной тройки возникают проблемы, нужно посоветовать учащемуся, использовать полный перебор. Например, возьмём любую фигурку из мешка (можно сразу положить её в мешок Р) и найдём в мешке Л ещё две такие же фигурки, просматривая все фигурки в мешке Л по строкам. Найдя две нужные фигурки, положим их в мешки С и О. После этого фигурок в мешке Л становится меньше, а значит, перебор делать проще.
Задача 175. Обратите внимание на тех ребят, которые всё ещё путают латинские буквы с похожими русскими буквами, например путают Я и R, У и Y, И и N и пр. С такими ребятами стоит обсудить вопрос о различении русских и латинских букв подробно, держа перед глазами оба алфавита. Можете использовать для этого разговора материал из урока «Латинский алфавит» (текст «О названиях и начертаниях букв»).
Задача 176. В этой задаче дети на материале новой темы «Разбиение мешка на части» повторяют названия дней недели. Один из вариантов решения — перебор всех слов из мешка С сверху вниз. Если просматриваемое слово — это название дня недели, то перекладываем его в мешок Н, если нет, то переходим к следующему слову (просмотренные слова из мешка С можно помечать галочками).
Задача 177. Здесь дети будут использовать для решения разные стратегии. Кто-то будет сразу сопоставлять пары римских и арабских чисел, кто-то будет записывать арабские числа римскими цифрами и затем искать в наборе такие же записи, а кто-то наоборот будет записывать римские числа арабскими цифрами и затем соединять числа в пары. При возникновении проблем лучше всего посоветовать ребёнку вернуться к проекту «Римские цифры».
Задача 178. В этой задаче дети должны осуществить перебор всех слов, которые стоят в Словаре между словом ПЯТЬ и словом СЕНТЯБРЬ, и найти все такие слова, в которых нет одинаковых букв. Таких слов оказывается всего шесть: РАЗНЫЕ, РЕБЁНОК, РУЧЕЙ, САПОГИ, СЕГОДНЯ, СЕМЬ.
Задача 179. Эта задача довольно сложная, поскольку в ней ребятам приходится использовать одновременно несколько условий. Последнюю букву (Ь) можно поставить в слово сразу. Из четвёртого и пятого утверждений следует, что в слове имеются два кусочка: Д — Р и Е — Л. Поскольку в слове всего 5 букв, осталось выяснить, какой из этих кусочков стоит в слове первым, а какой — вторым. На этот вопрос даёт ответ третье утверждение. В результате мы получаем слово ДРЕЛЬ.
Задача 180 (необязательная). Это задачи комбинаторного характера. Действительно, нужно перебрать все возможные комбинации из 4 бусин (определённой формы) двух цветов. В данном случае комбинаций существует всего 9, а мешков у нас восемь, поэтому перебрать придётся почти все комбинации методом проб и ошибок (которым часто пользуются дети в таких задачах), это сделать удастся далеко не всем детям. Хорошо бы провести некоторые рассуждения, например такие. Рассмотрим пока 2 круглые бусины из мешков. Сколькими способами их можно раскрасить двумя цветами? Как видим тремя: обе зелёным, обе жёлтым и одну зелёным, а другую жёлтым. Та же ситуация будет и с 2 квадратными бусинами — существует три способа их раскрашивания в зелёный и жёлтый цвета. Теперь каждый из трёх способов раскрашивания круглых бусин можно комбинировать с каждым из трёх способов раскрашивания квадратных бусин. Получаем всего 3 × 3 = 9 возможных способов. Конечно, ваши дети пока не смогут провести такие рассуждения, и будут действовать методом проб и ошибок. Зато эти рассуждения могут помочь вам при работе с учеником, который запутался.
Дата добавления: 2015-10-31; просмотров: 105 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение задач 160—176 из учебника | | | Решение компьютерных задач 181—187 |