Читайте также:
|
|
Вище зазначалось, що переміщення тіла, яке має одну нерухому точку, з одного положення в інше здійснюється шляхом трьох послідовних поворотів навколо відповідних осей. Згідно з теоремою Ейлера-Даламбера будь-яке переміщення твердого тіла, що має одну нерухому точку, з одного положення в інше можна здійснити одним поворотом тіла навколо осі, яка проходить через нерухому точку. Вісь, навколо якої здійснюється поворот, називається миттєвою віссю обертання.
Миттєва вісь обертання являє собою геометричне місце точок тіла, швидкості яких у даний момент часу дорівнюють нулю.
При русі тіла з однією нерухомою точкою в кожний даний момент часу існує миттєва вісь обертання, яка проходить через нерухому точку. Поворотом навколо цієї осі на нескінченно малий кут тіло переміщується з даного положення в нескінченно близьке до даного. Кутова швидкість, з якою здійснюється цей поворот, називається миттєвою кутовою швидкістю:
(22.2)
Кутову швидкість тіла, що має нерухому точку, не можна визначити похідною від деякого кута за часом (при русі тіла навколо нерухомої точки кут просто не існує). Миттєва кутова швидкість повинна бути задана безпосередньо як функція часу. Цю кутову швидкість можна показати у вигляді вектора , направленого вздовж миттєвої осі обертання ОР так, щоб спостерігач, дивлячись з кінця вектора , бачив обертання тіла проти руху годинникової стрілки (рис. 22.2).
Дата добавления: 2015-07-07; просмотров: 345 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Рівняння сферичного руху твердого тіла | | | Рухомі та нерухомі аксоїди |