Читайте также:
|
|
Состояние равновесия – фазовая траектория, для которой вектор фазовой скорости .
Рассмотрим АДС , по первому приближению сделаем замену , тогда .
, . Тогда - линеаризованная система, являющаяся ЛОСДУ с постоянными коэффициентами.
, . Тип и характер устойчивости определяются корнями , представимого в виде . Если , т.е. и , то это простое состояние равновесия, иначе – сложное.
Если , то требуется посчитать .
Если , то это состояние равновесия типа вырожденный узел. Вырожденный узел устойчивый, если , неустойчивый, если . Все фазовые траектории стремятся к состоянию равновесия, касаясь направления собственного вектора.
Если , то это состояние равновесия дикритический узел. Дикритический узел устойчивый, если , неустойчивый, если . Все фазовые траектории стремятся к состоянию равновесия, причем каждая по своему направлению.
Дата добавления: 2015-08-09; просмотров: 140 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Фазовая плоскость ЛОСДУ 2 порядка с ПостК. Состояние равновесия типа фокус и центр. | | | Исследование устойчивости решений динамических систем с помощью функции Ляпунова. |