Читайте также:
|
|
Непрерывная зависимость решения от начальных условий на значит, что .
Решение устойчиво по Ляпунову, если . Решение асимптотически устойчиво в малом, если оно устойчиво по Ляпунову и . Решение, не устойчивое по Ляпунову, неустойчиво, т.е. .
Рассмотрим систему уравнений для возмущения: (1). Предположим, что функции непрерывны и дифференцируемы в окрестности начала координат. Тогда линеаризуем систему, разложив правые части в ряд Тейлора и отбросив все члены разложения порядка выше первого. Получим систему уравнения по первому приближению: (2), где . Предположим, что (2) автономна, т.е. . Обозначим - матрицу, составленную из .
Т. Ляпунова об устойчивости в малом: 1) если система (2) автономна и все корни характеристического уравнения имеют отрицательные действительные части, то нулевое решение (1) асимптотически устойчиво в малом. 2) если есть хотя бы один корень с положительной действительной частью, то система нулевое решение (1) неустойчиво. 3) если есть корни с действительной частью равной 0, то устойчивость нулевого решения (1) не определяется системой в первом приближении.
Критерий Рауса-Гурвица: необходимое и достаточное условие отрицательности всех корней многочлена состоит в положительности всех главных диагональных миноров матрицы Гурвица .
Необходимым условием отрицательности всех корней многочлена является положительность всех его коэффициентов. Для многочлена второй степени это условие является и достаточным.
Дата добавления: 2015-08-09; просмотров: 147 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Виды траекторий АДС. Сравнение геометрической интерпретации АДС в фазовом и расширенном фазовом пространстве. | | | Фазовая плоскость ЛОСДУ 2 порядка с ПостК. Состояние равновесия типа узел. |