Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Базис, теорема о существовании и единственности разложения вектора по базису

Читайте также:
  1. Відокремлення дійсних коренів многочленів. Теорема Штурма
  2. Глава 9. О существовании множества ложных или предполагаемых могил по всему миру.
  3. Графоаналитический метод разложения функции в ряд Фурье
  4. Два вектора плоскости линейно зависимы тогда и только тогда они коллинеарны.Два вектора плоскости линейно независимы в том и только том случае, если они не коллинеарны.
  5. Задание №2. Доказать, что векторы образуют базис и написать разложение вектора по векторам этого базиса.
  6. Запись уравнения Шредингера для кет-вектора и уравнение нормировки в обозначениях П.Дирака

Определение. Пусть – произвольный вектор, – произвольная система векторов. Если выполняется равенство

, (1)

то говорят, что вектор представлен в виде линейной комбинации данной системы векторов. Если данная система векторов является базисом векторного пространства, то равенство (1) называется разложением вектора по базису . Коэффициенты линейной комбинации называются в этом случае координатами вектора относительно базиса .

Теорема. (О разложении вектора по базису.)

Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.

Доказательство. 1) Пусть L произвольная прямая (или ось) и –базис . Возьмем произвольный вектор . Так как оба вектора и коллинеарные одной и той же прямой L, то . Воспользуемся теоремой о коллинеарности двух векторов. Так как , то найдется (существует) такое число , что и тем самым мы получили разложение вектора по базису векторного пространства .

Теперь докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства :

и , где . Тогда и используя закон дистрибутивности, получаем:

.

Так как , то из последнего равенства следует, что , ч.т.д.

2) Пусть теперь Р произвольная плоскость и – базис . Пусть произвольный вектор этой плоскости. Отложим все три вектора от какой-нибудь одной точки этой плоскости. Построим 4 прямых. Проведемпрямую , на которой лежит вектор , прямую , на которой лежит вектор . Через конец вектора проведем прямую параллельную вектору и прямую параллельную вектору . Эти 4 прямые высекают параллелограмм. См. ниже рис. 3. По правилу параллелограмма , и , , – базис , – базис .

Теперь, по уже доказанному в первой части этого доказательства, существуют такие числа , что

и . Отсюда получаем:

и возможность разложения по базису доказана.

рис.3.

Теперь докажем единственность разложения по базису. Допустим противное. Пусть имеется два разложения вектора по базису векторного пространства : и . Получаем равенство

, откуда следует . Если , то , а т.к. , то и коэффициенты разложения равны: , . Пусть теперь . Тогда , где . По теореме о коллинеарностидвух векторов отсюда следует, что . Получили противоречие условию теоремы. Следовательно, и , ч.т.д.

3) Пусть – базис и пусть произвольный вектор. Проведем следующие построения.

Отложим все три базисных вектора и вектор от одной точки и построим 6 плоскостей: плоскость, в которой лежат базисные векторы , плоскость и плоскость ; далее через конец вектора проведем три плоскости параллельно только что построенным трем плоскостям. Эти 6 плоскостей высекают параллелепипед:

рис.4.

По правилу сложения векторов получаем равенство:

. (1)

По построению . Отсюда, по теореме о коллинеарности двухвекторов, следует, что существует число , такое что . Аналогично, и , где . Теперь, подставляя эти равенства в (1), получаем:

(2)

и возможность разложения по базису доказана.

Докажем единственность такого разложения. Допустим противное. Пусть имеется два разложения вектора по базису :

и . Тогда

. (3)

Заметим, что по условию векторы некомпланарные, следовательно, они попарно неколлинеарные.

Возможны два случая: или .

а) Пусть , тогда из равенства (3) следует:

. (4)

Из равенства (4) следует, что вектор раскладывается по базису , т.е. вектор лежит в плоскости векторов и, следовательно, векторы компланарные, что противоречит условию.

б) Остается случай , т.е. . Тогда из равенства (3) получаем или

. (5)

Так как – базис пространства векторов лежащих в плоскости, а мы уже доказали единственность разложения по базису векторов плоскости, то из равенства (5) следует, что и , ч.т.д.

Теорема доказана.


Дата добавления: 2015-08-21; просмотров: 478 | Нарушение авторских прав


Читайте в этой же книге: Вывод уравнения прямой | Уравнение прямой, проходящей через точку, перпендикулярно заданному вектору | Доказать условия параллельности и перпендикулярности прямых на плоскости и в пространстве | Общее уравнение плоскости | Вывод уравнения плоскости, проходящей через точку, перпендикулярно вектору, и проходящей через 3 точки. | Параметрические и канонические уравнения прямой. | Понятие определителя n-го порядка | Миноры и алгебраические дополнения. | Решение линейных систем по формулам Крамера. Исследование линейных систем. | Теорема о выражении скалярного произведения через координаты векторов-сомножителей |
<== предыдущая страница | следующая страница ==>
Линейные операции над векторами: определения, свойства| Определение и свойства скалярного произведения векторов

mybiblioteka.su - 2015-2024 год. (0.008 сек.)