Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Понятие определителя n-го порядка

Читайте также:
  1. I. Что подпадает под понятие "гражданские права и обязанности"?
  2. II. Исключить «лишнее» понятие
  3. А) Конституция как понятие и как идея
  4. А) Понятие бредовой идеи
  5. А) Понятие внесознательного механизма
  6. А) ПОНЯТИЕ ЖИЗНИ У ГУССЕРЛЯ И ГРАФА ЙОРКА
  7. А) ПОНЯТИЕ ИГРЫ

Часто говорят также "определитель матрицы", поэтому сначала объясним, что такое матрица. Матрица - это прямоугольная таблица, составленная из чисел, которые нельзя менять местами. Квадратная матрица - таблица, у которой число строк и число столбцов одинаково. Определитель может быть только у квадратной матрицы.

Итак, пусть дана квадратная таблица, состоящая из чисел, расположенных в n строках (горизонтальных рядах) и в n столбцах (вертикальных рядах). С помощью этих чисел по некоторым правилам, которые мы изучим ниже, находят число, которое и называют определителем n -го порядка и обозначают следующим образом:

(1)

Числа называют элементами определителя (1) (первый индекс означает номер строки, второй – номер столбца, на пересечении которых стоит элемент; i = 1, 2,..., n; j = 1, 2,..., n). Порядок определителя – это число его строк и столбцов.

Свойство 1. При замене строк столбцами (транспонировании) значение определителя не изменится, т.е.

Свойство 2. Если хотя бы один ряд (строка или столбец) состоит из нулей, то определитель равен нулю. Доказательство очевидно.

В самом деле, тогда в каждом члене определителя один из множителей будет нуль.

Свойство 3. Если в определителе поменять местами два соседних параллельных ряда (строки или столбцы), то определитель поменяет знак на противоположный, т.е.

 

Свойство 4. Если в определителе имеются два одинаковых параллельных ряда, то определитель равен нулю:

Свойство 5. Если в определителе два параллельных ряда пропорциональны, то определитель равен нулю:

Свойство 6. Если все элементы определителя, стоящие в одном ряду, умножить на одно и то же число, то значение определителя изменится в это число раз:

Следствие. Общий множитель, содержащийся во всех элементах одного ряда, можно вынести за знак определителя, например:

 

Свойство 7. Если в определителе все элементы одного ряда представлены в виде суммы двух слагаемых, то он равен сумме двух определителей:

Свойство 8. Если к элементам какого-либо ряда прибавить произведение соответствующих элементов параллельного ряда на постоянный множитель, то значение определителя не изменится:

Свойство 9. Если к элементам i -го ряда прибавить линейную комбинацию соответствующих элементов нескольких параллельных рядов, то значение определителя не изменится:

Справедливость этого равенства вытекает из свойства 8.


Дата добавления: 2015-08-21; просмотров: 156 | Нарушение авторских прав


Читайте в этой же книге: Вывод уравнения прямой | Уравнение прямой, проходящей через точку, перпендикулярно заданному вектору | Доказать условия параллельности и перпендикулярности прямых на плоскости и в пространстве | Общее уравнение плоскости | Вывод уравнения плоскости, проходящей через точку, перпендикулярно вектору, и проходящей через 3 точки. | Решение линейных систем по формулам Крамера. Исследование линейных систем. | Линейные операции над векторами: определения, свойства | Базис, теорема о существовании и единственности разложения вектора по базису | Определение и свойства скалярного произведения векторов | Теорема о выражении скалярного произведения через координаты векторов-сомножителей |
<== предыдущая страница | следующая страница ==>
Параметрические и канонические уравнения прямой.| Миноры и алгебраические дополнения.

mybiblioteka.su - 2015-2025 год. (0.005 сек.)