Читайте также: |
|
.
Теорема доказана.
Замечание 8.2. Из теоремы 8.2 следует, что при раскрытии неопределенности типа бесконечно малые функции, входящие в числитель и/или знаменатель как множители, можно заменять эквивалентными им бесконечно малыми.
Заметим, что далеко не всегда бесконечно малые функции в числителе или знаменателе имеют вид, позволяющий непосредственно применять формулы (8.1)–(8.8). Как правило, числитель и/или знаменатель следует предварительно преобразовать. Очень часто приходится преобразовывать разность, стремящуюся к 0, в произведение. Это касается, в первую очередь, тригонометрических функций. Разность логарифмов одного и того же основания обычно преобразовывают к логарифму частного. Чтобы воспользоваться соотношениями (8.2) и (8.4), следует выделить число 1 как слагаемое либо под знаком логарифма, либо в основании степени. Преобразуя тригонометрические выражения, часто приходится использовать формулы приведения. Конечно, приходится прибегать и к преобразованиям другого типа.
Пример 8.1. Вычислить .
Решение. Используя соотношения (8.8) и (8.2) соответственно, заменим бесконечно малые и эквивалентными. Получим
.
Дата добавления: 2015-07-11; просмотров: 82 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Сравнение бесконечно малых. Эквивалентные бесконечно малые | | | Вычисление пределов степенно-показательных функций |