Основна теорема теорії похибок
У геодезичній практиці переважно використовуються не окремі безпосередньо зміряні величини, а їх функції, тобто непрямі вимірювання. Так, наприклад, нахил лінії визначають як відношення безпосередньо виміряного перевищення і довжини лінії. Довжина лінії, недоступної для безпосереднього вимірювання, обчислюється із розв’язання трикутника, у якого безпосередньо виміряні базисна сторона і горизонтальні кути. Площу земельної ділянки прямокутної форми обчислюють як добуток безпосередньо виміряної довжини і ширини ділянки. Перелік подібних прикладів можна продовжувати. Звідси виникає завдання оцінювання точності функції виміряних величин за відомими стандартами σ або средньоквадратичними похибками m безпосередньо виміряних аргументів. Для розв’язання цього завдання доведена теорема.
Теорема 4.1. Якщо певна безперервна функція, що диференціюється за всіма аргументами
(4.1)
аргументи якої x1, x2,…, xt – незалежні результати безпосередніх вимірів певних величин X1, X2,…, Xt, виконаних в умовах, що характеризуються стандартами σ1, σ2,…, σt, то стандарт цієї функції буде дорівнювати

де
– частинні похідні функції (4.1) за змінними x1, x2,…, xt, 
Доказ. З курсу математичного аналізу відомо, що повний диференціал функції (4.1) дорівнює

Припустимо, що величини x1, x2,…, xt виміряні n разів. При цьому результати вимірів містять випадкові похибки, які позначимо:

Наочно|наглядний| в графічній формі величини вимірів|вимірів| і їх похибки, ілюструються рис. 4.1.
n-я серія
вимірювань
|
2-я серія
вимірювань
|
1-я серія
вимірювань
|
Рис. 4.1 – Графічна інтерпретація величин вимірів і їх похибок
Вважаючи, що похибки Δі є приростами величин хі (малими величинами), то на підставі запису повного диференціала (4.3) можна записати систему рівнянь у частинних похідних, де кожне з рівнянь характеризує зміну похибок у серії вимірів величин x1, x2,…, xt


… (4.4)

Відзначимо, що кожен елемент
,
,…,
,
системи рівнянь має константу
. Для того, щоб точно оцінити функції виміряних величин y = f (x1, x2,…, xt) з використанням стандарту σ або середньоквадратичної похибки m (див. формулу 2.14 і 3.6) необхідно здійснити наступні перетворення з системою рівнянь (4.4). Звести у квадрат праві та ліві частини кожного з рівнянь. Отримаємо


… (4.5)

Тепер кожне з рівнянь є сумою квадратів. Для того, щоб привести праві частини рівнянь до вигляду відомих формул скороченого множення многочленів
додамо до кожного рівняння суми добутків, що складаються з двох пар у кожному многочлені. Отримаємо




… (4.6)


Підсумуємо змінні лівої і правої частини|частки| отриманих|одержувати| многочленів і запишемо їх в символах Гаусса К.Ф.



… (4.7)



…

Розділимо отримані суми на n і запишемо остаточний вираз, що враховує всі змінні (похибки Δi) системи рівнянь (4.4)


Припускаючи, що n → ∞, знайдемо межі лівої і правої частини отриманого виразу. На основі властивості незалежності (2.13) маємо наступне:

Враховуючи властивість розсіювання (2.14) для правої і лівої частини|частки| рівняння (4.8) справедливо записати


Спростимо вираз (4.8), відкинувши подвійні суми
,
оскільки вираз (4.9) їх перетворює на нуль, і, застосовуючи до його лівої частини граничне значення формули (4.10), а до правої частини – граничні значення формули (4.11) і добувши з них квадратний корінь, отримаємо вираз (4.2), що і потрібно було довести.
Дата добавления: 2015-10-29; просмотров: 190 | Нарушение авторских прав
Читайте в этой же книге: Метешкін К.О. | Мережева|мережна| модель технології навчання | Видатні науковці | Вимірювання|виміри| і їх класифікація | Похибки вимірів і їх класифікація | Властивості випадкових похибок | КІЛЬКІСНІ КРИТЕРІЇ ОЦІНЮВАННЯ ТОЧНОСТІ ВИМІРІВ | Апостеріорна оцінка точності функцій виміряних|виміряти| величин | Проста арифметична середина і її властивості | Формула розрахунку емпіричної середньої квадратичної| похибки |
mybiblioteka.su - 2015-2025 год. (0.01 сек.)