Читайте также:
|
|
Задача 72. В этой задаче ребята должны выбрать утверждения, не имеющие смысла для данной цепочки. Некоторые дети при этом наверняка будут путать бессмысленные утверждения с ложными. Возможен и другой вид ошибок — неправильно доопределять истинное утверждение так, чтобы оно имело смысл. В таких случаях полезно попросить учащегося вернуться к листу определений и затем явно сформулировать условия, которые должны выполняться, чтобы оно имело смысл. Например, в первом утверждении, чтобы утверждение имело смысл, достаточно убедиться в том, что седьмая фигурка в цепочке есть (поскольку нескольких седьмых фигурок в цепочке быть не может). В данном случае её нет, поэтому утверждение не имеет смысла. Стоит обратить внимание на пятое утверждение, многие дети его доопределяют, мысленно заменяя утверждением «Пятой фигуркой в цепочке идёт шкаф». Эти два утверждения, хотя и похожи, имеют разный логический смысл. В утверждении из условия задачи речь идёт про шкаф. Шкаф в цепочке не один, поэтому утверждение не имеет смысла. В то же время в нашем утверждении речь идёт о пятой фигурке. Она в цепочке есть (и конечно, только одна), поэтому утверждение имеет смысл (и истинно).
Задача 73. В этой задаче нужно определить значения истинности утверждений и по ходу работы выделить утверждения, не имеющие смысла для данной цепочки. Возможно, для кого-то из ребят это будет сложно. Таким учащимся нужно посоветовать сначала, как в предыдущей задаче, выделить все бессмысленные утверждения, поставить в окнах рядом с ними прочерк, а затем поработать с оставшимися утверждениями. Заметим, что первое и второе утверждения не могут быть бессмысленными ни для какой цепочки — в первом утверждении речь идёт о числе бусин, а во втором — о наличии бусин. Третье утверждение не имеет смысла для цепочки Т, поскольку в цепочке Т нет бусины следующей после жёлтой круглой. Последнее утверждение не имеет смысла для цепочки Т, поскольку в ней несколько квадратных бусин. Заметим, что предпоследнее утверждение имеет смысл, хотя треугольная бусина в цепочке и не одна. Причина в том, что здесь употребляется слово «каждое», за счёт этого становится понятно, что условие нужно проверить для всех треугольных бусин цепочки.
Задача 74. Данная задача в некотором смысле обратная задачам 72 и 73. Если в предыдущей задаче мы определяли значения истинности нескольких утверждений для одной цепочки, то здесь наоборот — определяем значение истинности одного утверждения для разных цепочек. При этом у детей формируется понимание того, что часто утверждение может менять своё значение истинности в зависимости от выбранного объекта. В данном случае для того, чтобы утверждение имело смысл, нужно проверить три условия: синяя бусина в цепочке есть; синяя бусина в цепочке ровно одна; синяя бусина в цепочке не последняя (следующая бусина после неё тоже есть). Здесь утверждение не имеет смысла для пяти цепочек.
Задача 75. Это общеразвивающая задача, в которой дети не просто строят цепочку по описанию, но и имеют возможность познакомиться с флагами некоторых стран. После изучения текущего листа определений ребята уже должны понимать, что в силу истинности второго утверждения в цепочке должен быть ровно один флаг России и после него в цепочке должна быть следующая фигурка (флаг Латвии). Аналогично из истинности третьего утверждения следует, что в цепочке должен быть ровно один флаг Китая и перед ним в цепочке должна быть предыдущая фигурка — флаг Белорусии. Поскольку все фигурки в цепочке должны быть разными, то число фигурок в цепочке ограничено числом разных флагов в библиотеке и техническими возможностями построения цепочки на экране. Наименьшее число фигурок в цепочке 4: флаги России, Латвии, Китая, Белорусии.
Задача 76. В этой задаче ребята повторяют использование компьютерного инструмента лапка для сравнения наложением.
Задача 77. Данная задача находится на стыке между информатикой и математикой. Если бы в библиотеке лежали монеты достоинством 10 рублей и 1 рубль, то задачу можно было бы легко решить, используя только разрядный состав числа 23 (23 = 20 + 3). Здесь в библиотеке лежат лишь монеты достоинством 2 рубля и 5 рублей, поэтому привычные математические соображения не срабатывают и приходится подключать информатические методы, например метод перебора или метод проб и ошибок. В ходе этого метода дети постепенно сделают выводы, позволяющие приблизиться к решению: 1) не получается построить решение только двухрублёвыми или только пятирублёвыми монетами; 2) пятирублёвых монет нельзя брать больше 4; 3) если взять 2 или 4 пятирублёвые монеты, то решение построить не удаётся. Таким образом, данная задача имеет ровно два решения: 1 пятирублёвая и 9 двухрублёвых монет, 3 пятирублёвые и 4 двухрублёвые монеты.
Задача 78. Это не слишком сложная задача на построение цепочки по описанию. Однако теперь ребята должны понимать — чтобы второе утверждение имело смысл, в цепочке должно быть хотя бы 4 фигурки, только в этом случае в цепочке будет четвёртая фигурка с конца. Это с учётом первого утверждения означает, что для построения цепочки будут использованы все фигурки из библиотеки, причём по одному разу.
Задача 79 (необязательная). Если кто-то из ребят в этой задаче совсем запутался, обсудите вместе алгоритм, следуя которому можно построить решение. Например, чтобы понять, какие буквы лишние в первом мешке, нужно попытаться найти каждую из букв первого мешка во всех остальных мешках. Берём любую букву из первого мешка, например букву М, и ищем её во всех остальных мешках. В четвёртом мешке её нет, значит, это лишняя буква, вынимаем её из мешка (можно также вынуть её и из других мешков). Берём букву П, она есть во всех мешках, значит, её оставляем в мешке и пометим её во всех мешках галочкой. Будем действовать так и дальше, пока в первом мешке не останется 6 букв. После этого будет достаточно вынуть из всех мешков буквы, которые не помечены галочками.
Дата добавления: 2015-10-31; просмотров: 118 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение компьютерных задач 64 — 71 | | | Предварительное общее обсуждение |