Читайте также:
|
|
Непериодический сигнал можно выразить непрерывной суммой (интегралом) экспоненциальных функций.
Существует два способа представления.
1. Функция f(t) выражается через экспоненциальные функции на конечном интервале (-T/2<t<T/2), а затем выполняется условие T®¥.
2. Способ сводится к созданию периодической функции с периодом T, которая совпадает с f(t) только в пределах одного периода. При T®¥ оказывается, что периодическая функция имеет один единственный период на интервале (-¥<t<¥), что соответствует функции f(t).
Первый и второй способы существенно не различаются, но второй более удобен.
Пусть задана функция f(t), гипотетический вид которой показан на рис.3.2. Эту функцию надо представить на интервале (-¥<t<¥) суммой экспоненциальных функций.
Рис.3.2
Построим новую периодическую функцию, в которой fТ(t) повторяется через Т секунд. Вид функции fТ(t) показан на рис.3.3.
Рис.1.3
При T®¥ будет выполняться условие . Таким образом, ряд Фурье, представляющий функцию f(t) на бесконечном интервале, будет также представлять f(t) при T=¥.
Для функции fТ(t) разложение в ряд имеет вид
, где .
Пусть T®¥, тогда w0®0 и спектр становится плотнее (чаще). При T®¥ амплитуды Fn®0, но они существуют на любой частоте, т.е спектр из дискретной функции превращается в непрерывную.
Введем новые обозначения nw0 = wn. Так как Fn функции от аргумента wn, то заменим Fn на Fn(wn). Обозначим TFn(nw0) = TFn(wn) = Fn(wn).
Тогда
, . (1.9)
Так как T=2p/w0, то
. (1.10)
Равенство (1.10) говорит о том, что fТ(t) можно выразить суммой экспоненциальных функций с частотами wi, i=1,2,..,n. Амплитуда составляющей на частоте wn равна F(wn)w0/2p, т.е. пропорциональна F(wn).
Графическая иллюстрация формулы (1.10) представлена на рис.3.4.
Рис.3.4
Если F(wn)ejwnt - действительные величины, то формула (1.10) есть сумма площадей прямоугольников. Чем меньше w0, тем лучше точность аппроксимации. При T®¥ w0®0 обозначим через dw. Сумма в уравнении (1.10) переходит в интеграл. Кривая оказывается непрерывной функцией частоты и записывается через F(w)ejwt. При T®¥ fТ(t) ® f(t) и формулы (1.9) и (1.10) имеют вид
, (1.11)
. (1.12)
Функция F(w) является частотным спектром функции f(t) и называется функцией спектральной плотности. Уравнение (1.12) – прямое преобразование Фурье, а уравнение (1.11) – обратное преобразование Фурье.
Дата добавления: 2015-10-21; просмотров: 85 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Комплексный спектр сигнала | | | СПЕКТР ПЛОТНОСТИ ЭНЕРГИИ |