Читайте также: |
|
Схема Н. В данной схеме модель источника ошибок отличается от ранее рассмотренных схем допустимостью перекрытия пакетов. Любая позиция последовательности {Еi} может стать началом пакета ошибок, причем длины интервалов между началами пакетов lН (lН=0,1,…) являются случайными независимыми величинами. Поэтому процесс {Di}, где Di=1 для позиций, являющихся началами пакетов, и Di=0 для позиций, не являющихся началами пакетов, представляет собой процесс с мгновенным восстановлением. Статистика этого процесса полностью определяется распределением вероятностей Р(lН) длин между пакетами.
Длины пакетов lН (lН=1,2,…) являются значениями независимых случайных величин и определяются распределениями Р(lН). В пределах каждого отдельного пакета (не перекрывающегося с другими пакетами) ошибки независимы и имеют вероятность возникновения ошибки e. Таким образом, статистика {Еi} по схеме Н полностью определяется двумя одномерными распределениями вероятностей – длин пакетов Р(lН) и интервалов между началами пакетов Р(lН), т.е. статистикой последовательности пар независимых чисел {lН, lН} и вероятностью ошибки в пакете e.
На рис..1.7 приведен пример построения последовательности {2,3},{3,4},{1,5},{6,8},{0,2} для схемы Н.
Рис.1.7
Для данной модели, в отличие от схемы В, независимы не промежутки между пакетами, а интервалы между пакетами. Это обуславливает возможность перекрытия и примыкания пакетов (возможно перекрытие нескольких пакетов).
Последовательность ошибок {Еi} для данной модели может быть представлена последовательностью состояний {Сi}, в пределах которых ошибки независимы и имеют одинаковые вероятности. Число состояний – более двух и может быть сколь угодно большим, т.к. на участке наложения пакетов вероятность ошибки может превышать вероятность ошибки e в каждом отдельном пакете. Действительно, в пределах каждого пакета позиции поражаются с вероятностью 2e (см. рис. 1.7), следовательно, вероятность поражения позиции на участке наложения n пакетов равна (1-(1-2e)n), а вероятность ошибки равна 0,5[1-(1-2e)n]. С ростом числа наложений пакетов вероятность поражения стремится к единице, а вероятность ошибки - к 0,5. При e=0,5 последовательность {Еi} может быть представлена двоичной последовательностью элементарных состояний {Ci}={Si}, не являющейся процессом восстановления.
Перекрытие пакетов усложняет подсчеты. Просто определить вероятность того, что данная случайная величина является началом пакета:
.
Сложность определяется тем, что сумма длин пакетов на некотором участке не дает возможность непосредственно найти распределение вероятностей числа пораженных символов и ошибок.
Если взять пакеты длиной в один символ, т.е. Р(lН=1)=1 и Р(lН>1)=0, то процесс состояний {Ci} вырождается в процессе с мгновенным восстановлением (перекрытие пакетов невозможно). Если распределение Р(lН) геометрично, то канал не будет обладать памятью, а вероятность ошибки определится формулой
.
Дата добавления: 2015-10-21; просмотров: 64 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Описание источника ошибок на основе процессов восстановления | | | Модель Гилберта |