Читайте также: |
|
Вычисление КРИ-I может быть сведено к вычислению определенного интеграла. Приведем без доказательства формулы вычисления КРИ-I в случаях, если кривая задана явным образом, параметрически и в полярных координатах.
Явное представление кривой
Если плоская кривая задана непрерывной и непрерывно дифференцируемой на функцией , где и - соответственно абсциссы точек и , то
. (2.3)
Параметрическое представление кривой
Если кривая задана параметрически уравнениями , где и - непрерывно дифференцируемые функции параметра , причем точке соответствует значение , а точке - значение , то
. (2.4)
В случае если гладкая кривая задана в пространстве параметрическими уравнениями , то
.
Полярное представление кривой
Если плоская кривая задана уравнением , причем функция и ее производная непрерывны, то имеет место следующая формула
.
Дата добавления: 2015-08-09; просмотров: 248 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
В сферических координатах | | | Некоторые приложения КРИ-I рода в геометрии и физике. |