Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Примеры. 1. Функция f(x)=(x-1)2 является бесконечно малой при x→1, так как (см

Читайте также:
  1. Докажите, что калькирование - это продуктивный способ перевода научно-технического текста. Приведите примеры.
  2. Е) Привести необходимые примеры.
  3. Контрольная работа. Примеры.
  4. Модель OSI. Суть, цели создания. Стеки протоколов. Примеры.
  5. Нормированные пространства. Сходимость по норме. Примеры. Подпространства.
  6. Приведем конкретные примеры.
  7. Примеры.

1. Функция f(x) =(x -1)2 является бесконечно малой при x →1, так как (см. рис.).

2. Функция f(x) = tg x – бесконечно малая при x →0.

3. f(x) = ln (1+ x)– бесконечно малая при x →0.

4. f(x) = 1/ x – бесконечно малая при x →∞.

Установим следующее важное соотношение:

Теорема. Если функция y=f(x) представима при x→a в виде суммы постоянного числа b и бесконечно малой величины α(x): f (x)=b+ α(x) то .

Обратно, если , то f (x)=b+α(x), где a(x) – бесконечно малая при x→a.

Теорема 1. Алгебраическая сумма двух, трех и вообще любого конечного числа бесконечно малых есть функция бесконечно малая.

Теорема 2. Произведение бесконечно малой функции a(x) на ограниченную функцию f(x) при x→a (или при x→∞) есть бесконечно малая функция.

Теорема 3. Отношение бесконечно малой функции α(x) на функцию f(x), предел которой отличен от нуля, есть бесконечно малая функция.


Дата добавления: 2015-07-26; просмотров: 83 | Нарушение авторских прав


Читайте в этой же книге: Теорема о существовании точных граней у ограниченных числовых множеств. | Бесконечно малые и бесконечно большие последовательности. | Теорема Вейерштрасса о пределе монотонной ограниченной последовательности. | Функция | Понятие производной функции. Геометрическая и физическая интерпретация производной. | Производные показательной функции и обратных тригонометрических функций. | Решение. | Теорема ФЕРМА. | Правило Лопиталя |
<== предыдущая страница | следующая страница ==>
Предел функции| Теорема 4 (свойства бесконечно малых функций).

mybiblioteka.su - 2015-2024 год. (0.006 сек.)