Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Примеры. Исследовать ряды на абсолютную и условную сходимость.

Читайте также:
  1. Vi. Некоторые методические примеры экономического обоснования проектируемых мероприятий
  2. Арифметические примеры для 6го занятия.
  3. Арифметические примеры для 8го занятия.
  4. Билет №20. Аллельные гены. Наследование признаков при взаимодействии аллельных генов. Примеры. Множественный аллелизм. Механизм возникновения.
  5. Билет №21. Неаллельные гены. Наследование признаков при взаимодействии неаллельных генов. Примеры.
  6. Виды узнавания. Примеры узнавания из греческой трагедии.
  7. Вопрос 2. Прямые методы оптимизации: общая характеристика и примеры пассивных и последовательных стратегий поиска.

Исследовать ряды на абсолютную и условную сходимость.

1)

Решение. Ряд, составленный из абсолютных величин членов данного ряда: сходится по признаку сравнения, т.к. , а ряд – сходится (обобщенный гармонический ряд при ). Следовательно, данный ряд является абсолютно сходящимся.

2)

Решение. Составим ряд из абсолютных величин членов данного ряда: . Исследуем этот ряд на сходимость с помощью предельного признака сравнения, сравнив его с эталонным рядом (p подберем в процессе сравнения), имеем и лишь при равенстве степеней числителя и знаменателя, т.е. при , следовательно, сравниваемые ряды являются расходящимися. Таким образом, ряд, составленный из модулей, расходится, и абсолютной сходимости нет.

Исследуем данный знакочередующийся ряд с помощью признака Лейбница. Очевидно, что:

1) , 2) .

Оба пункта признака Лейбница выполнены, следовательно, данный ряд условно сходится.

Задачи

Исследовать ряды на абсолютную и условную сходимость:

45. 46. 47.

48. 49. 50.

51. 52. 53.

54. 55. 56.

57. 58. 59.


Дата добавления: 2015-07-18; просмотров: 115 | Нарушение авторских прав


Читайте в этой же книге: Свойства сходящихся рядов | Необходимый признак сходимости рядов | Примеры | Примеры | Примеры | Признаки сходимости знакопеременных рядов | Примеры | Ряды Маклорена и Тейлора | Разложение в ряд Маклорена некоторых функций | Примеры |
<== предыдущая страница | следующая страница ==>
Примеры| Теорема Абеля

mybiblioteka.su - 2015-2024 год. (0.007 сек.)