Читайте также: |
|
Одно из требований теоремы Гаусса-Маркова - дисперсия случайной компоненты
D( ) = = const,
т.е. предположение о постоянстве дисперсии случайной составляющей для всех наблюдений. Если это условие соблюдается, процесс et называется гомоскедастичным. Если это не так, то процесс называется гетероскедастичным. Для обнаружения гетероскедастичности используется метод Голдфельда-Квадта. При проведении проверки по этому тесту предполагается сначала, что стандартное отклонение σ является случайной составляющей пропорционально значению одной из независимых переменных: X1 t или Х2t.
Для того, чтобы осуществить проверку на гомоскедастичность, необходимо для начала сортировать имеющиеся данные по возрастанию одной из переменных X1 t или Х2t. Важное условие такой сортировки – неразрывность троек (X1t,X2t,Yt), они могут перемещаться только вместе. В результате получаем новую таблицу, в верхней части которой сосредоточены меньшие значения Х1t, а в нижней – б о льшие.
Далее делим получившийся массив данных на две (по возможности) равные части. Для каждой из частей определяем регрессию с помощью функции ЛИНЕЙН и выделяем значения ESS1 и ESS2.
Следующий шаг – вычисление статистик (статистика Голдфельда-Квадта) и 1/GQ=ESS2/ESS1.
Статистика GQ является случайной величиной, распределенной по закону Фишера со степенями свободы числителя и степенями свободы знаменателя , где М – количество пар чисел в первой, а L – количество пар чисел во второй части выборки.
Далее находим значение F-статистики Фишера, используя уровень значимости α (обычно равен 0,05), а также количество степеней свободы первой и второй части списка; проверяем условия
Если оба этих условия выполняются, то гипотеза о равенстве дисперсий в обеих половинах выборки принимается с вероятностью p=1-α. Если хотя бы одно из неравенств не выполняется, то гипотеза отвергается с той же вероятностью.
Дата добавления: 2015-10-23; просмотров: 187 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Модель парной регрессии. Границы доверительных интервалов | | | Парная регрессия. Оценивание параметров методом наименьших квадратов |