Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Анализ вариации зависимой переменной в регрессии

Читайте также:
  1. ABC-анализ данных о поставщиках
  2. EV9.2 Анализ характера и последствий отказов (FMEA)
  3. I этап. Горизонтальный и вертикальный анализ финансовой отчётности.
  4. I. 4.4. Анализ чувствительности математической модели и
  5. I.5.5. Просмотр и анализ результатов решения задачи.
  6. II закон термодинамики. Характеристические функции системы. Уравнение энергетического баланса системы, его анализ.
  7. II этап. Анализ и оценка имущественного положения предприятия.

Рассмотрим вариацию (разброс) значений вокруг среднего значения.

Разобьем эту вариацию на две части: объясненную регрессионным уравнением и не объясненную (т. е. связанную со случайной составляющей εt).

Запишем разброс в виде следующего равенства:

И вариация представляется в виде трех слагаемых

Рассмотрим последнее слагаемое. В него входит и тогда

Потому что - по определению, по необходимому условию экстремума

Поэтому верно равенство

,

Где – это TSS, или весь разброс

– это ESS, или необъясненная часть

– это RSS, или объясненная часть

2. Тест Дарбина – Уотсона некоррелированности случайных возмущений в схеме Гаусса – Маркова

Этот тест предназначен для проверки предпосылки о том, что теоремы Гаусса – Маркова, точнее, важнейшего частного случая этой предпосылки, а именно статистической гипотезы

при j=i-1

Неадекватность гипотезы влечет, очевидно, и неадекватность предпосылки. Часто истинной причиной отклонения гипотезы оказывается ошибка в выборе функции регрессии в спецификации модели, например пропуск значимой предопределенной переменной. Эмпирическая корреляция случайных остатков, порожденная этой причиной, называется ложной. Тест Дарбина – Уотсона позволяет идентифицировать, в частности, ложную корреляцию и поэтому рассматривается в эконометрике как один из наиболее важных тестов.

Шаги теста:

1. Модель оценивается по уравнениям методом наименьших квадратов, рассчитываются по формуле оценки остатков.

2. Для проверки случайной последовательности на корреляцию используется критерий Дарбина-Уотсона Раскроем скобки и проведем преобразование исходной формулы:

Т.к. r – выборочный коэффициент корреляции

Из полученной формулы следует, что если r =0 (корреляция отсутствует), то DW=2; если корреляция положительна, то DW < 2; если отрицательна - DW > 2. Так как коэффициент корреляции Поскольку критическое значение dкр невозможно табулировать по ряду причин, граница раздвигается и значения левой границы dL и правой границы dU выбираются из таблицы в зависимости от числа наблюдений n, числа независимых переменных k и уровня значимости α. Следовательно, по таблицам Дарбина-Уодсона выбирают 2 константы и , по аргументам 1) 2) 3)

3. Определяется интервал, в который попадает величина DW

 

Отметим, что тест Дарбина – Уотсона базируется на предположении, что:

1. Функция регрессии модели является неоднородной (параметр подлежит определению)

2. Случайные остатки в уравнениях наблюдений распределены по нормальному закону

3. Предпосылки теоремы Гаусса – Маркова справедливы.

3. Метод имитационного моделирования. Исследование последствий нарушения условий теоремы Гаусса – Маркова

Известным методом оценки риска является метод имитационного моделирования (метод Монте-Карло).

Имитационное моделирование, как правило, включает следующие этапы:

1. определение вероятностных распределений каждой переменной;

2. компьютер выбирает случайное значение для каждой неопределенной переменной, основанное на вероятностном распределении этой переменной;

3. отобранное значение вместе с фиксированными факторами (ставкой налогов, амортизационных отчислений и т. д.) используется в модели для определения результативных показателей;

4. этапы 2 и 3 повторяются многократно, например 500 раз. В результате получают распределение 500 значений результативного показателя. Обычно это позволяет вы­делить наиболее вероятное значение.

В каждом эксперименте должна обеспечиваться адекватность условий теоремы Гаусса-Маркова. Величины a0(j), a1(j), (j) – несмещённые оценки параметров а0, а1, должны быть рассеяна вокруг этих параметров. Разброс оценок относительно параметров должен согласовываться со значениями их средних квадратических ошибок Sa0 и S a1

Преимуществом метода моделирования является тот факт, что он позволяет увидеть широкий диапазон вероятных результатов, а не несколько дискретных оценок. Тем не менее, метод Монте-Карло мало распространен на практике из-за трудоемкости и сложности выявления всех взаимосвязей и корреляции переменных.

 

u – случайная переменная (случайный остаток), которая характеризуется своим законом распределения Pu(q).

Pu(q)

Для организации процесса конкретных значений случайной переменной, обладающей законом распределения, существуют таблицы конкретных значений стандартных нормально распределённых случайных переменных.

Эти переменные u1*, u2*..un*

каждая переменная распределена по нормальному закону распределения. Все переменные являются независимыми в данном наборе. И каждая из них имеет нулевое значение и единичную дисперсию:

Сом (ui*, uj*)=0 при i неравном j

E(ui*)=E(u2*)= …E(un*)=m=0

Var(ui*)= Var(u2*)=… Var(un*)= =1


Дата добавления: 2015-10-23; просмотров: 215 | Нарушение авторских прав


Читайте в этой же книге: Интервальное прогнозирование по оцененной линейной эконометрической модели парной регрессии значений эндогенной переменной | Множественная линейная регрессионная модель. Оценивание параметров множественной регрессии методом наименьших квадратов | Определение границ доверительного интервала | Оценивание параметров модели взвешенным методом наименьших квадратов | Проверка гипотез относительно коэффициентов парной регрессии | Автокорреляция случайного возмущения | Модель парной регрессии. Границы доверительных интервалов | Гетероскедастичность случайной компоненты. Тесты на наличие гетероскедастичности | Парная регрессия. Оценивание параметров методом наименьших квадратов | Дисперсионный анализ в парной регрессии |
<== предыдущая страница | следующая страница ==>
Завершающий проект| Компьютерное моделирование эконометрических систем

mybiblioteka.su - 2015-2024 год. (0.007 сек.)