Читайте также:
|
|
1) Находим оценки параметров спецификации (коэффициенты регрессии а^0, а^1, а^2, оценки среднеквадратичного отклонения коэффициентов регрессии Sa0, Sa1, Sa2 и т.д.):
2) Далее, выбираем строку и обозначаем ее прогнозом. Настоящее значение функции обозначим Yp.
3) Следующим шагом необходимо рассчитать прогнозное значение Y^p, используя полученные оценки коэффициентов регрессии (см. рисунок).
В большинстве случаев налицо явное несовпадение результата и прогноза. Но ожидать точное совпадение прогноза и результата по меньшей мере наивно. Во-первых, Y^p - величина случайная, т.к. все три оценки коэффициентов a^0, a^1, a^2 вычислялись через значения случайной величины Y. Во-вторых, значение Yp содержит в себе неизвестное значение случайной составляющей εр. Все, что мы можем предпринять в этой ситуации, это проверить, попадают ли оба значения в доверительный интервал и делать заключение по этому факту.
Величина доверительного интервала зависит от дисперсии прогноза, которая складывается из дисперсии εt - случайной составляющей эконометрической модели и дисперсии случайной величины оценки регрессии (уравнение регрессии), значения коэффициентов которой вычислены с помощью функции ЛИНЕЙН (см. рисунок).
Однако оценки коэффициентов a^0, a^1, a^2 зависимы и для оценки их влияния на точность прогноза мало знать только их дисперсии, но нужно учесть и их взаимную зависимость, т.е. ковариацию, которая задается матрицей ковариаций.
Матрица ковариации регрессии оценивается по следующей формуле: Cov(A^) = S2ε*(XT*X)-1, где A^ = (a^0, a^1, a^2)T, оценки коэффициентов регрессии; S2ε - дисперсия случайной составляющей ε.
4) Далее производим следующие вычисления:
1. (XT*X)-1.
2. , где .
5) Определим доверительный интервал для прогноза как (Y^p-tα*Sпрог, Y^p+tα*Sпрог), где tα-статистика Стьюдента, вычисляемая по формуле EXCEL СТЬЮДРАСПОБР.
Если оба значения (т.е. Yp и Y^p) попадают в указанный интервал, то модель признается адекватной и пригодной для целей прогнозирования.
Дата добавления: 2015-10-23; просмотров: 171 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Множественная линейная регрессионная модель. Оценивание параметров множественной регрессии методом наименьших квадратов | | | Оценивание параметров модели взвешенным методом наименьших квадратов |