Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Задача 2.36

Читайте также:
  1. Билет № 26 задача № 20
  2. Билет № 26 задача № 20
  3. Билет № 37 задача № 1
  4. Билет № 37 задача № 1
  5. Важнейшая задача оптовой торговли
  6. Воспитательная задача.
  7. Глава 12. Ваша главная задача

Среднее значение скорости счета импульсов от исследуемого радионуклида с большим периодом полураспада составляет 100,0 имп./мин. Определить вероятность получения 105 имп./мин, а также вероятность того, что абсолютное отклонение ε1 от среднего числа имеет значение, большее 5,0 имп./мин.

Решение. Согласно условию задачи, предполагаем, что время проведения измерений существенно меньше периода полураспада исследуемого радионуклида и для вычисления искомых вероятностей можно воспользоваться распределением Пуассона (2.8). Однако использование формулы (2.8) технически затруднительно, т.к. связано с вычислением факториалов больших чисел и возведением чисел в степени с большими показателями. Получить более удобную для вычислений форму можно, если воспользоваться утверждением центральной предельной теоремы (ЦПТ) теории вероятности, согласно которой при μ >> 1 распределение Пуассона переходит в нормальное распределение с дисперсией, равной μ:

. (2.36.1)

Тогда

.

Очевидно, что сумма вероятностей появления любого значения скорости счета импульсов от = 0 и до равняется единице. Тогда

(2.36.2)

Используя формулу (2.36.1), вычислим

.

Таким образом,

 


Дата добавления: 2015-07-08; просмотров: 133 | Нарушение авторских прав


Читайте в этой же книге: Задача 2.17 | Задача 2.18 | Задача 2.19 | Задача 2.21 | Задача 2.22 | Задача 2.23 | Задача 2.24 | Задача 2.29 | Задача 2.31 | Задача 2.33 |
<== предыдущая страница | следующая страница ==>
Задача 2.35| Задача 2.38

mybiblioteka.su - 2015-2024 год. (0.007 сек.)