Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Статистическое определение вероятности

Читайте также:
  1. I. Определение группы.
  2. I. Определение и проблемы метода
  3. I. ОПРЕДЕЛЕНИЕ И ПРОБЛЕМЫ МЕТОДА
  4. III. Определение средней температуры подвода и отвода теплоты
  5. IX. Империализм и право наций на самоопределение
  6. А) Определение, предназначение и история формирования государственного резерва.
  7. А) философское определение материи

Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь статистическое определение вероятности, основанное на подсчете частоты наступления события в испытаниях.

Определение 2. Статистической вероятностьюнаступления события А называется относительная частота появления этого события в n произведенных испытаниях [4], т.е.

(А) = W(A) = m/n,

где (А) статистическое определение вероятности; W(A) относительная частота; n количество произведенных испытаний; m число испытаний, в которых событие А появилось. Заметим, что статистическая вероятность является опытной, экспериментальной характеристикой.

Причем при n → ∞, (А) → P(А), так, например, в опытах Бюффона (XVIII в.) относительная частота появления герба при 4040 подбрасываниях монеты, оказалось 0,5069, в опытах Пирсона (XIX в.) при 23000 подбрасываниях 0,5005.

 

 


Дата добавления: 2015-07-08; просмотров: 267 | Нарушение авторских прав


Читайте в этой же книге: ЛЕКЦИЯ 1. ТЕОРИИ ВЕРОЯТНОСТЕЙ. ИСТОРИЯ ВОЗНИКНОВЕНИЯ. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ | Классическое определение вероятности | ЛЕКЦИЯ 3. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. АКСИОМАТИКА КОЛМОГОРОВА | Доказательство. | Пример 1. | Основные свойства функции распределения | ЛЕКЦИЯ 5. РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН | Распределение Бернулли | ЛЕКЦИЯ 6. ИНТЕГРАЛЬНАЯ ТЕОРЕМА МУАВРА–ЛАПЛАСА, ТЕОРЕМА БЕРНУЛЛИ | Доказательство. |
<== предыдущая страница | следующая страница ==>
ЛЕКЦИЯ 2. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ. СТАТИСТИЧЕСКОЕ, ГЕОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ| Последовательность испытаний. Формула Бернулли

mybiblioteka.su - 2015-2024 год. (0.005 сек.)