Читайте также:
|
|
Если уравнение , где - дифференцируемая функция по переменным , определяет как функцию независимых переменных , то частные производные этой неявной функции вычисляются по формулам: , ,…, при условии, что .
В частности, для функции , заданной неявно уравнением справедлива формула , при условии , а для функции , заданной уравнением
справедливы формулы: , , при условии .
Частные производные высших порядков вычисляются последовательным дифференцированием данных формул.
Уравнение касательной плоскости к поверхности , заданной неявным уравнением , в точке имеет вид , а уравнение нормали – вид .
Тема 6. Экстремумы функций нескольких переменных.
Точка , принадлежащая области определения функции , называется стационарной точкой функции, если в этой точке каждая из её частных производных равна нулю, т.е. ,…, или .
Точка называется точкой минимума (максимума) функции , если существует окрестность точки такая, что для всех точек этой окрестности выполняется неравенство ().
Точки минимума и максимума функции называются точками экстремума, а значения функции в этих точках – экстремумами функции.
Необходимое условие экстремума. Если - точка локального экстремума функции , дифференцируемой в точке , то - стационарная точка функции.
Достаточное условие экстремума. Пусть - стационарная точка дважды дифференцируемой в точке функции . Тогда, если при всевозможных наборах значений , не равных одновременно нулю:
1) , то в точке функция имеет максимум; 2) , то в точке функция имеет минимум; 3) принимает как положительные, так и отрицательные значения, то в точке функция не имеет экстремума.
Исследование знака сводится к исследованию знакоопределённости второго дифференциала, как квадратичной формы относительно переменных (например, с помощью критерия Сильвестра).
В частности, функция в стационарной точке , при условии , где , , : 1) имеет максимум, если и ; 2) имеет минимум, если и ; 3) не имеет экстремума, если .
Точка называется точкой условного минимума (максимума) функции , если существует окрестность точки такая, что для всех точек этой окрестности, удовлетворяющих уравнениям связи () выполняется неравенство (). Точки условного минимума и максимума функции называются точками условного экстремума, а значения функции в этих точках – условными экстремумами функции.
Задача нахождения условного экстремума сводится к нахождению обычного экстремума функции Лагранжа , где () –постоянные множители Лагранжа.
Необходимое условие условного экстремума. Если - точка условного экстремума функции при наличии уравнений связи (), то в точке выполняются условия
.
Решая данную систему, находят неизвестные координаты точки , в которой возможен условный экстремум и соответствующие ей значения множителей Лагранжа .
Вопрос о существовании и характере условного экстремума решается на основании изучения (например, с помощью критерия Сильвестра) знака второго дифференциала функции Лагранжа в точке при значениях , рассматриваемого как квадратичная форма относительно переменных при условии, что они связаны соотношениями: ().
В частности, для функции исследуется знак при условии .
Достаточное условие условного экстремума. Пусть - точка возможного условного экстремума функции , т.е. в этой точке выполнены необходимые условия условного экстремума. Тогда, если при всевозможных наборах значений , удовлетворяющих соотношениям () и не равных одновременно нулю: 1) , то в точке функция имеет условный максимум; 2) , то в точке функция имеет условный минимум; 3) принимает как положительные, так и отрицательные значения, то в точке функция не имеет условного экстремума.
Если функция дифференцируема в ограниченной и замкнутой области, то она достигает своих наибольшего и наименьшего значений в этой области или в стационарной точке, или в граничной точке области.
Дата добавления: 2015-07-25; просмотров: 234 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Основные правила дифференцирования элементарных функций. | | | Неопределенный интеграл |