Читайте также: |
|
8.1 – 30. Найти локальные экстремумы функции
.
Для нахождения локальных экстремумов дифференцируемой функции необходимо: 1) Найти область определения функции. 2) Найти первые частные производные и функции. 3) Решить систему уравнений (необходимое условие экстремума) и найти точки (с учётом возможных дополнительных ограничений на значения аргументов и ) возможного локального экстремума функции. 4) Найти вторые частные производные , , ; составить выражение и вычислить значения и в каждой точке возможного экстремума. 5) Сделать вывод о наличии экстремумов функции , используя достаточное условие экстремума: если , то в точке экстремума нет; если и , то в точке - локальный минимум; если и , то в точке - локальный максимум; если , то требуется дополнительное исследование точки (например, по определению). 6) Найти локальные экстремумы (экстремальные значения) функции.
Дата добавления: 2015-07-25; просмотров: 77 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение. | | | Решение. |