Читайте также:
|
|
Тема 1. Производные и дифференциалы функции одной переменной.
Приращением функции в точке , соответствующим приращению аргумента называется выражение .
Производной 1-ого порядка функции в точке называется конечный предел . Геометрический смысл производной состоит в том, что число равно угловому коэффициенту касательной к графику функции в точке : , где - угол наклона касательной к оси прямоугольной декартовой системы координат .
Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Необходимым условием дифференцируемости в точке является непрерывность функции в данной точке.
Если функция непрерывна в точке и , то говорят, что в точке функция имеет бесконечную производную. В этом случае касательная к графику функции в точке перпендикулярна к оси .
Числа и называются, соответственно левой и правой производными функции в точке . Условие равносильно дифференцируемости функции в точке , при этом .
Любая элементарная функция дифференцируема во всякой внутренней точке естественной области определения функции , в которой аналитическое выражение её производной имеет смысл. Производная , рассматриваемая на множестве тех точек , где она существует, сама является функцией. Операция нахождения производной называется также дифференцированием функции .
Дата добавления: 2015-07-25; просмотров: 47 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Решение. | | | Основные правила дифференцирования элементарных функций. |