Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Спиновая переменная волновой функции



Читайте также:
  1. II. Функции школьной формы
  2. II. Функции школьной формы
  3. II. Функции школьной формы
  4. II. Функции школьной формы
  5. II. Функции школьной формы
  6. include "widgets/Common.h" // общие функции
  7. L Вводом функции с клавиатуры

Рассмотрим одну частицу – система с 3 степенями свободы. Задача решается в - представлении.

,

но есть еще внутренний параметр – спин, тогда

.

Здесь - переменная (пространственная координата) и (спиновая переменная, а именно проекция спина на ось ).

Здесь мы рассматриваем стационарную задачу, поэтому от t не зависит.

Скалярное произведение теперь запишем в виде

Вероятность обнаружения частицы в объеме вблизи точки :

Если хотим найти реализацию конкретного значения :

Рассмотрим действие операторов в пространстве четырех переменных

Было известно

(40.1)

Обобщим (40.1) на случай четырех переменных:

(40.2)

Рассмотрим случай когда действует только на спиновую переменную. В этом случае ядро будет следующим

и интеграл (40.2) переходит в интеграл:

 

Тогда

Переменная здесь не играет большой роли. В дальнейшем будем ее опускать, тогда

Функция имеет 2s+1 переменную.

Ядро в дискретных переменных вырождается в матрицу, т. е. это есть матрица размером .

 

 


Дата добавления: 2015-07-11; просмотров: 63 | Нарушение авторских прав






mybiblioteka.su - 2015-2025 год. (0.004 сек.)