Читайте также:
|
|
Этот вопрос идентичен вопросу рассмотренному в классической механике - будут те же соотношения, но для операторов
.
Поставим в соответствие конкретной системе операторы и :
В декартовой системе координат , .
Здесь n – число точек в системе.
.
- функция от оператора координаты.
Мы рассматриваем - представление, здесь
Мы рассматриваем декартову систему координат. Гамильтониан мы поставили в соответствие системе материальных точек. Эта система незамкнутая, т. к. потенциальная энергия зависит от времени. (т. е. здесь нет однородности времени).
Перейдем к более простой задаче. Рассмотрим систему N материальных точек во внешнем стационарном поле
Здесь отвечает за внутреннее взаимодействие между частицами.
отвечает за внешнее воздействие на систему частиц.
.
Выражение, описывающее внешнее воздействие обладает аддитивностью, т. е.
.
Индекс a означает, что разные частицы могут взаимодействовать с внешним полем по разному закону. Если все частицы одинаковые и одинаково взаимодействуют с внешним полем, то индекс a убирается.
Внутреннее взаимодействие неаддитивно.
Рассмотрим случай свободной материальной точки. Соответственно она ни с чем не взаимодействует:
Тогда , или в -представлении, то
,
тогда .
Если материальная точка во внешнем поле:
, ,
Нестационарное поле .
Стационарное поле .
Центральное поле .
Рассмотрим систему двух материальных точек. Мы рассматриваем частный случай – замкнутая система двух материальных точек.
В случае классической механики: .
Отсутствие t в энергии взаимодействия – это однородность времени и закон сохранения энергии.
Зависимость энергии от модуля есть изотропность пространства.
В квантовой механике в -представлении:
,
,
где
Дата добавления: 2015-07-11; просмотров: 86 | Нарушение авторских прав