Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Статистическое имитационное моделирование

Читайте также:
  1. YIII.5.2.Аналогия и моделирование
  2. Диагностическое восковое моделирование
  3. Имитационное моделирование
  4. Имитационное моделирование рисков на базе метода Монте-Карло
  5. Имитационное моделирование функционирования системы.
  6. Имитационное поведение
  7. КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ КООПЕРАТИВНЫХ СТРАТЕГИЙ

Статистическое имитационное моделирование основывается на генерации случайных величин, имитации функционирования системы и статистической обработке результатов моделирования. Методом моделирования может быть исследована СМО любой степени сложности.

Для проведения моделирования могут использоваться как универсальные языки программирования так и проблемно-ориентированные - GPSS, SIMULA и др.

Параметры функционирования системы оцениваются при моделировании по результатам многократного обслуживания требований (многократных испытаний). При имитации работы системы случайные величины (длительность обслуживания в каналах, интервалы между поступлениями требований, время возврата требований в систему, моменты возникновения отказов каналов и их длительность и др.) получают генерацией по ранее приведенным алгоритмам в зависимости от вида распределения (закон, усечение, смещение).

Число обслуживаний (опытов) необходимо принимать таким, чтобы обеспечить оценку интересующих параметров с заданной точностью при принятой доверительной вероятности.

Таким образом, определение числа опытов производится по аналогии с расчетом размера выборки для исследования случайных величин. При этом это число рекомендуется определять в ходе моделирования на основе оценки точности рассчитываемых параметров.

Алгоритмы моделирования ранее рассмотренных систем массового обслуживания приведены на рисунках 2.18 и 2.19. Число моделируемых обслуживаний определяется на основе формулы для нормального закона распределения, а в качестве интересующего показателя принята средняя продолжительность ожидания требованием начала обслуживания. Отноcительная точность оценивания задана равной e с односторонней доверительной вероятностью g= 0.95 (квантиль равна 1.645).

Структура алгоритмов следующая:

блок 2– ввод и вывод на принтер исходных данных;

блоки 3-6 – формирование начальных условий моделирования;

блоки 7-10 – поиск канала (источника) с минимальным значением момента времени освобождения от предыдущего обслуживания (прибытия на обслуживание);

блоки 11-18– имитация обслуживания требований и накопление сумм длительностей времени простоев и обслуживания;

блоки 19-21– принятие решения об окончании моделирования или его продолжении;

блок 22 – наращивание номера опыта (испытания);

блоки 23-24 – вычисление средних значений параметров и вывод их на монитор (принтер).

42.Оценка адекватности уравнения регрессии данным эксперимента
Для проверки существенности коэффициента множественной корреляции и таким образом оценивания согласованности уравнения регрессии с экспериментальными данными используется статистика критерия Фишера

или

,

где и – соответственно объясненная и остаточная дисперсия для зависимого параметра.

Чтобы не было оснований отвергнуть гипотезу, что экспериментальные данные согласуются с полученным уравнением регрессии, рассчитанная статистика критерия Фишера должна быть больше табличного значения (F > Fт). Табличное значение Fт определяется в зависимости от уровня значимости γ и числа степеней свободы k1 и k2:

k1 = n;

k2= m - n- 1.

Уровень значимости (вероятность) рекомендуется принимать 0.01 – 0.05 (чем меньше, тем жестче требования к адекватности модели).

Если F<Fт, то считается, что уравнение регрессии не согласуется с экспериментальными данными.

43.Оценивание параметров теоретического закона распределения.

Для некоторых законов распределения ниже приведены вид функции плотности вероятности и функции распределения, а также зависимости для вычисления значений параметров.

 


Дата добавления: 2015-10-16; просмотров: 137 | Нарушение авторских прав


Читайте в этой же книге: Нормальный закон распределения | Гамма-функция точно определяется по формуле | Программа сортировки по индексам | Способ 5 | Критерий хи - квадрат (Пирсона) | Критерий Мизеса-Смирнова | Критерий Вальда | Пример. | Критерий Лапласа | Многоканальная разомкнутая система массового обслуживания |
<== предыдущая страница | следующая страница ==>
Критерий Сэвиджа| Закон распределения Релея

mybiblioteka.su - 2015-2024 год. (0.006 сек.)