Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Система управления с динамическими фильтрами

Читайте также:
  1. I – Семеричная Система
  2. I. Разрушение управления по ПФУ
  3. II. Организационные структуры управления и тенденции в их развитии
  4. III. Систематизированные Исторические ДАННЫЕ [1] по ЭТРУСКАМ
  5. IV. Митрополическая система церковного управления во II и III веках и ее происхождение
  6. Quot;ОБ ОБЩИХ ПРИНЦИПАХ ОРГАНИЗАЦИИ МЕСТНОГО САМОУПРАВЛЕНИЯ В РОССИЙСКОЙ ФЕДЕРАЦИИ" (Закон о МСУ) от 06.10.2003 N 131-ФЗ
  7. V. ИММУННАЯ СИСТЕМА НЕСПОСОБНА ЗАЩИТИТЬ ОРГАНИЗМ ОТ РАКА. МИФЫ ИММУНОЛОГИИ

 

Рассмотрим систему (1), (2)

, (4.6.1)

. (4.6.2)

Смысл векторов и матриц дан в подразделе 4.5. Пусть с помощью динамического фильтра получена оценка вектора , ошибка динамического фильтра определена соотношением , откуда

. (4.6.3)

Сформируем закон управления в виде

. (4.6.4)

Подставив (4) в (1), получим

или

(4.6.5)

Выражение в квадратных скобках можно рассматривать как внешнее воздействие на управляемый объект, причём, вследствие асимптотической устойчивости динамического фильтра, величина или ограничена малой величиной, или даже стремится к нулю. Решение уравнения (5) складывается из двух слагаемых:
1) вынужденного решения, обусловленного выражением в скобках, и 2) собственного решения, совпадающего с решением уравнения

(4.6.6)

Уравнение (6) совпадает с уравнением (4.4.4) при . Поэтому порядок выбора матрицы совпадает с порядком, изложенным в подразделе 4.4.

Обобщив результаты подразделов 4.5 и 4.6, констатируем, что параметры динамического фильтра и регулятора могут выбираться независимо, т.е. действует принцип разделения. Обычно быстродействие наблюдателя делают на 20-50% больше (время переходного процесса на 20-50% меньше), чем управляемого с помощью регулятора объекта.

Функциональная схема системы управления с динамическим фильтром представлена на рис. 1.

 

 

Рисунок 4.6.1 – Функциональная схема системы управления с динамическим фильтром

 

На рис. 1 – сигнал, формирующий программу движения,

– вектор измеряемых выходных сигналов.

 


Дата добавления: 2015-08-05; просмотров: 61 | Нарушение авторских прав


Читайте в этой же книге: Особенности динамики нелинейных систем | Исследование устойчивости методами Ляпунова | Теорема Ляпунова об асимптотической устойчивости | Теорема Барбашина-Красовского | Исследование устойчивости методом фазовой плоскости | Идея гармонической линеаризации | Модальное управление | Запись дифференциальных уравнений в пространстве состояний | Описание работы двигателя постоянного тока (ДПТ) независимого возбуждения (НВ) в пространстве состояний | Модальное управление в пространстве состояний |
<== предыдущая страница | следующая страница ==>
Динамические фильтры| Редуцированные наблюдатели

mybiblioteka.su - 2015-2025 год. (0.006 сек.)