Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Алгоритм деления многозначных чисел в десятичной системе счисления.

Читайте также:
  1. I. 2. 2. Современная психология и ее место в системе наук
  2. II ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ
  3. II. Два подразделения общественного производства
  4. II. Основные определения
  5. III. Структурные подразделения Центра
  6. IV. Обмен в пределах подразделения II. Необходимые жизненные средства и предметы роскоши
  7. V. ПОКАЗАТЕЛИ ОРГАНИЗАЦИИ И КАЧЕСТВА ОБСЛУЖИВАНИЯ БОЛЬНЫХ В ХИРУРГИЧЕСКИХ ОТДЕЛЕНИЯХ

Первое знакомство с алгоритмом письменного деления происходит в 3 классе (М3М, ч. 2, с. 78) в следующей последовательности:

1) знакомство с приемом деления трехзначного числа на однозначное (число единиц каждого разряда делимого делится на делитель без остатка);

2) деление трехзначного числа на однозначное (число единиц одного из разрядов делимого не делится на делитель без остатка);

Знакомя детей с приемом письменного деления, мы сопоставляем запись в строчку и с записью "уголком" с целью понимания взаимосвязи между устными и письменными вычислениями.

Ученики сначала вспоминают прием устного деления двузначного числа на однозначное, например 64: 2.

Учитель выполняет на доске подробную запись:

64: 2 = (60 + 4): 2 = 60: 2 + 4: 2 = 30 + 2 = 32

Далее предлагаем по аналогии разделить 864 на 2, фиксируя ход вычислений на доске (при этом делимое заменяем суммой разрядных слагаемых):

864: 2 =(800 + 60 + 4): 2 = 800: 2 + 60: 2 + 4: 2 = 400 + 30 + 2 = 432

Учитель обращает внимание на неудобство записи и предлагает компактный вариант:

- В некоторых случаях удобно записывать деление столбиком («уголком»).

(Знак письменного деления был показан в учебнике ранее М3М, ч. 2, с. 24.)

 

Сначала запишем делимое 864, затем изобразим уголок, который обозначает знак деления. Над чертой запишем делитель 2, под чертой будем записывать частное. Деление начинаем с единиц высшего разряда. Какой высший разряд? (Сотни). Делим сначала сотни, потом десятки и единицы. Сколько сотен? (8) Будем делить сотни. 8 сотен – это первое неполное делимое. Когда разделим сотни, то в частном получим сотни, а сотни в записи числа стоят на третьем месте справа, значит, в частном будет 3 цифры. Поставим на их месте 3 точки. Найдем, сколько сотен будет в частном: разделим 8 на 2, получим 4, пишем 4 на месте сотен. Что показывает число 4? (сколько сотен в частном). Узнаем, сколько сотен разделили: умножим 4 на 2, получится 8. Что показывает число 8? (Сколько сотен разделили). Все сотни разделили. Будем делить десятки. Второе неполное делимое: 6 десятков. Узнаем, сколько десятков будет в частном. Как это сделать? (6 разделить на 2, получится 3). Что показывает число 3? (Сколько десятков будет в частном). Все десятки разделили. Будем делить единицы. Третье неполное делимое: 4 единицы. Найдем, сколько единиц будет в частном. (4 ׃ 2 = 2). Все единицы разделили. Остаток равен нулю, пишем под чертой нуль. Назовите частное (432).

Знакомясь с новым материалом, ученики под руководством учителя приходят к заключению, что деление в столбик, в отличие от сложения, вычитания и умножения, выполняется, начиная с единиц высшего разряда. Далее учащиеся выполняют упражнения с подробным комментированием, с опорой на памятку:

Пишу…

Делю сотни…

Делю десятки…

Делю единицы…

Читаю ответ…

 

 

В 4 классе приемы письменного деления изучаются в три этапа:

I этап – деление на однозначное число:

1) деление многозначного числа на однозначное (первое неполное делимое - однозначное число);

2) деление многозначного числа на однозначное (первое неполное делимое - двузначное число);

3) деление многозначного числа на однозначное, когда в записи частного есть нули;

4) деление многозначного числа на однозначное, когда в записи частного есть нули (краткая запись).

II этап – деление на двузначные и трехзначные разрядные числа:

1) знакомство со свойством деления числа на произведение;

2) устные приемы вычисления;

3) деление с остатком на 10, 100, 1000;

4) знакомство с письменным приемом деления на разрядные числа (с остатком);

5) письменное деление на разрядные числа (без остатка);

6) деление на трехзначное разрядное число;

7) частные случаи деления на разрядное число.

III этап – деление на двузначное и трехзначное число:

1) знакомство с приемом письменного деления на двузначное число, когда в частном получается однозначное число (цифра частного находится в результате одной пробы);

2) деление на двузначное число с остатком;

3) деление на двузначное число, когда в частном получается многозначное число;

4) деление на двузначное число, когда цифра частного находится в результате нескольких проб;

5) прием деления для случая, когда делитель – двузначное число второго десятка (прием подбора);

6) частные случаи деления на двузначное число;

7) деление на трехзначное число, когда в частном получается однозначное число;

8) деление на трехзначное число, когда в частном получается двузначное число;

9) деление на трехзначное число, когда цифра частного находится в результате нескольких проб и при первой пробе получается число 10;

10) частные случаи деления на трехзначное число.

 


Дата добавления: 2015-07-26; просмотров: 1368 | Нарушение авторских прав


Читайте в этой же книге: Теоретических основ начального курса математики | Пересечение и объединение множеств. | Свойства вычитания. | Законы умножения, их назначение. | Свойства деления. | Особенности десятичной системы счисления. | Алгоритм сложения многозначных чисел в десятичной системе счисления. | Алгоритм вычитания многозначных чисел в десятичной системе счисления. | Числовые равенства и неравенства. | Числовые функции. Прямая пропорциональность. |
<== предыдущая страница | следующая страница ==>
Алгоритм умножения многозначных чисел в десятичной системе счисления.| Числовые выражения.

mybiblioteka.su - 2015-2024 год. (0.01 сек.)