Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Производные высших порядков

Читайте также:
  1. II Частные производные функции нескольких переменных
  2. II. Акты высших органов судебной власти
  3. II. Производные индола
  4. III Полный дифференциал функции нескольких переменных. Дифференциалы высших порядков
  5. б) ОБРАЗОВАНИЕ НЕРАСТВОРИМЫХ СОЛЕЙ ВЫСШИХ ЖИРНЫХ КИСЛОТ
  6. Виды высших чувств
  7. ГАЛОГЕНПРОИЗВОДНЫЕ УГЛЕВОДОРОДОВ

Если функция имеет частные производные в каждой точке некоторой области , то они представляют собой функции двух переменных, определенные в . Может случиться, что эти функции имеют в

частные производные. Тогда эти производные называются частными производ-ными второго порядка

, , , .

Используются и другие обозначения, например:

, .

Производные и называются смешанными производными второго поряд-ка. При некоторых условиях смешанные производные не зависят от порядка диф-ференцирования.

Теорема. Пусть функция имеет в области частные производные . Пусть, кроме того, смешанные производные и непре-рывны в . Тогда имеет место равенство

= .

Аналогично производным второго порядка вводятся частные производные третьего, четвертого, …, -го порядка. Для смешанных производных высших по-рядков остается справедливой сформулированная выше теорема.

 

 


Дата добавления: 2015-07-24; просмотров: 80 | Нарушение авторских прав


Читайте в этой же книге: Определение функции нескольких переменных | Предел функции нескольких переменных. Непрерывность | Частные производные | Дифференцируемость и полный дифференциал | Производные сложных функций | Сущестование и дифференцируемость неявной функции | Касательная к кривой в пространстве | Наибольшее и наименьшее значения функции в области | Производная по направлению. Градиент | Метод наименьших квадратов |
<== предыдущая страница | следующая страница ==>
Касательная плоскость к поверхности| Экстремумы функции нескольких переменных

mybiblioteka.su - 2015-2025 год. (0.006 сек.)