Читайте также:
|
|
I Вектор-функция и ее производная
Определение 1. Если каждому значению переменной t из некоторого мно-жества Т поставлен в соответствие некоторый вектор , то говорят, что на множестве Т задана вектор-функция
Определение 2. Вектор называют пределом вектор-функции в точке и пишут , если .
Определение 3. Производной вектор-функции в точке называют предел
Если в пространстве задана декартова прямоугольная система координат, то вектор определяется своими проекциями, т.е.
или .
Таким образом, вектор-функция – это упорядоченная тройка обычных функций одной переменной. А так как
,
то определение 2 равносильно следующим трем равенствам
.
Аналогично для производной получаем
.
Будем откладывать векторы , , от начала координат. Тогда их концы составят в пространстве некоторую линию, которую называют годографом вектор-функции . Например, для вектор-функции годограф – это винтовая линия.
II Физический смысл производной вектор-функции
Положение точки М в пространстве можно задавать ее координатами (в не-которой системе координат), а можно задавать и радиус-вектором , где О – начало координат. Если точка М движется, то зависит от времени, т.е. движение точки в пространстве можно задавать вектор-функцией , где t – время из некоторого промежутка. Годограф этой функции – это траектория дви-жения. Производная – это вектор мгновенной скорости:
.
III Уравнения касательной
Линию в пространстве обычно задают системой параметрических урав-нений
Однако, удобно такую линию понимать как годограф вектор-функции
.
Напомним, что, кратко говоря, касательная к линии L в ее точке –это пре-дельной положение секущей , когда точка стремиться к вдоль L. Другими словами, касательная в точке – это та прямая, проходящая через , направляющий вектор которой есть предел направляющего вектора секущей. Пусть и Тогда
,
т.е. , а следовательно и служат направляющими векторами секущей. Поэтому
Отсюда получаем два вывода:
1)вектор мгновенной скорости точки направлен по касательной к траек-тории движения;
2)канонические уравнения касательной к линии L в точке , которая соответствует значению параметра , имеют вид:
Пример. Показать, что касательные к линии образуют с осью постоянный угол.
Решение. Для винтовой линии направляющий вектор касательной . Если – угол между касательной и осью , то
.
Напомним, что – орт оси : . Значит,
.
Как видим, , а значит и , не зависят от параметра t, т.е = сonst.
Замечание. Нетрудно заметить, что для плоской линии
уравнение касательной имеет вид
Пример. Составить уравнение касательной к эллипсу
Решение. Пусть – точка касания, соответствующая значению параметра : . Тогда уравнение касательной:
Разделив обе части последнего равенства на а . b, получим известную формулу для касательной к эллипсу в его точке :
.
Дата добавления: 2015-07-24; просмотров: 309 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Сущестование и дифференцируемость неявной функции | | | Касательная плоскость к поверхности |