Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Введение. Химический факультет

Читайте также:
  1. I. 6. Введение
  2. I. Введение
  3. I. ВВЕДЕНИЕ
  4. I. ВВЕДЕНИЕ
  5. I. Введение.
  6. I. Введение.
  7. I.Введение

Химический факультет

 

 

РЕФЕРАТ

 

Современные модели описания структуры жидкости

Ассоциаты и кластеры в жидкостях

 

Выполнила студентка 691 группы Величкина Юлия

 

Барнаул 2002

 

Введение

Жидкое состояние вещества является промежуточным между твердым и газообразным. Область существования жидкости ограничена со стороны низких температур переходят в твердое состояние высоких – переходом в газообразное. Для каждого вещества существует температура, называемая критической Ткр , выше которой жидкость не может находится в равновесии с собственным паром.

Жидкости сохраняют отдельные свойства как твердых тел, так и газов.

Твердые тела по характеру расположения атомов или молекул подразделяются на кристаллические и аморфные. Кристаллы обладают ближним и дальним порядком.

Частицы кристалла расположены так, что расстояние между сколь угодно удаленными частицами непосредственно выражается через кратчайшее расстояние между двумя соседними частицами. По типам связи кристаллы подразделяются на атомные, ионные, молекулярные и металлические. Кристаллические тела обычно анизотропны, их механические, тепловые, электрические и оптические свойства в разных направлениях неодинаковы. Одно и то же кристаллическое вещество может находиться в нескольких модификациях, обладающих неодинаковой структурой. Так, углерод существует в виде графита и алмаза; двуокись кремния SiO2—в виде кварца, тридимита и кристаболита; сера — в виде ромбической и моноклинной модификации. Атомы, ионы или молекулы, образующие кристалл, совершают согласованные (коллективные) колебательные движения, энергия их сцепления больше внутренней энергии кристалла.

В газообразном состоянии вещества атомы или молекулы взаимодействуют друг с другом посредством ван-дер-ваальсовых сил притяжения на больших, по сравнению с размерами частиц, расстояниях, и квантово-механических сил отталкивания на малых расстояниях. Однако силы притяжения не достаточны, чтобы удержать молекулы друг возле друга, вследствие чего их взаимное расположение в газе хаотическое. Молекулы газа находятся в беспрерывном движении, которое происходит в виде поступательных, несогласованных (индивидуальных) перемещений и столкновений в конце каждого свободного пробега. Кинетическая энергия молекул газа значительно больше потенциальной. В многоатомных молекулах наряду с поступательным движением может происходить вращение молекулы как целого и колебания составляющих ее атомов.

Жидкость, как и твердое тело, — система динамическая. Атомы, ионы или молекулы, сохраняя ближний порядок во взаимном расположении, участвуют в тепловом движении, характер которого гораздо более сложный, чем в кристаллах. Молекулы жидкостей совершают колебания такого же типа, как и в кристаллах, но положения равновесия, относительно которых происходят эти колебания, не остаются неподвижными. Совершив определенное число колебаний около одного положения равновесия, молекула скачком переходит в новое положение и продолжает там колебаться вплоть до следующего скачка. Посредством таких скачкообразных перемещений молекул в жидкостях осуществляется диффузия, которую, в отличие от непрерывной, называют диффузией скачком.

 

 

Рис. 1. Диаграмма состояния однокомпонентного вещества.

 

 

Согласно Я. И. Френкелю, длительность пребывания молекулы во временном положении равновесия — время оседлой жизни — определяется по формуле

 

t=t0еw/kТ (1.1)

где t0 — период колебаний молекул около положения равновесия; W высота потенциального барьера, который отделяет друг от друга два соседних положения равновесия; k— постоянная Больцмана; Т абсолютная температура. Численное значение t зависит от строения и вязкости жидкости. Для воды при комнатной температуре to=l,4-10 -12 с. Следовательно, каждая молекула воды совершает около 100 колебаний относительно одного и того же положения равновесия, прежде чем переменить место. По образному выражению Френкеля, молекулы в жидкости ведут в основном оседлый образ жизни, что представляет собой характерную черту жидкого состояния, сближающего его с твердым телом, с той разницей, что в твердых телах время оседлой жизни гораздо больше, чем в жидких.

С ростом температуры время оседлой жизни молекул во временном положении равновесия уменьшается. Соответственно усиливается трансляционное движение молекул.

Многочисленные исследования показывают, что наряду с колебанием молекул в окружении своих соседей и активационными скачками в жидкостях происходят плавные перемещения молекул вместе с их ближайшим окружением. Иными словами, находящиеся в колебательном состоянии молекулы жидкости в каждый момент времени смещаются на некоторое расстояние (меньше межатомного), обусловливая непрерывную диффузию. Можно полагать, что в сжиженных инертных газах и металлах преобладает непрерывная диффузия, тогда как для ассоциированных жидкостей (например, для воды) более вероятен прыжковый механизм диффузии.

В жидком состоянии вещества в отличие от газообразного проявляются те же межмолекулярные силы притяжения, которые обусловливают тот или иной тип связи в кристалле. Так, например, между атомами сжиженных инертных газов действуют дисперсионные ван-дер-ваальсовы силы. Те же силы обусловливают взаимное притяжение молекул диэлектрических жидкостей (бензол, парафины и др.). Между молекулами воды, спиртов, кислот жирного ряда действуют специфические силы притяжения, возникновение которых связано с наличием в составе этих молекул группы ОН (водородная связь). В расплавах солей действуют электростатические силы, в металлах — силы металлической связи. В жидком германии, кремнии и других полупроводниковых веществах наряду с металлической связью частично сохраняется ковалентная связь. Жидкости, принадлежащие к данному типу межмолекулярных связей, характеризуются специфическим ближним порядком в расположении частиц, что отражается на поведении физических свойств вещества в жидком состоянии. В естественных условиях жидкости изотропны, имеют только одну модификацию. Исключением является гелий, который может находиться в двух фазах, и так называемые жидкие кристаллы, у которых существует как изотропная, так и анизотропная фазы.

Из изложенного следует, что жидкости по характеру взаимного расположения частиц, их динамике и взаимодействию ближе к кристаллическому, а не к газовому состоянию вещества. Полная энергия молекул жидкости равна сумме их кинетической и потенциальной энергий. Соотношение между их численными значениями зависит от температуры и давления. Являясь фазой, промежуточной между твердой и газообразной, жидкость, естественно, обнаруживает непрерывную гамму переходных свойств, примыкая в области высоких температур и больших удельных объемов к газам, а в области низких температур и малых удельных объемов - к твердым телам


Дата добавления: 2015-07-15; просмотров: 143 | Нарушение авторских прав


Читайте в этой же книге: Структура творчого процесу | Схема проекту постановки | Анкета про образ. | Леандр та Люцинта | СЦЕНІЧНИЙ АНАЛІЗ – АНАЛІЗ ДІЄЮ, ВИВЧЕННЯ ПОБУТУ | Скелет постановки | Дієва розповідь – це перехідний місток до аналізу дією. | Краще починати з простих етюдів. | Природа почуттів | Що таке стиль? |
<== предыдущая страница | следующая страница ==>
INTERNET-РЕСУРСЫ| Глава 1. Структура жидкостей

mybiblioteka.su - 2015-2024 год. (0.007 сек.)