Читайте также:
|
|
Уравнение
, | (6.46) |
где - заданная функция, а и - числовые (постоянные) коэффициентыназывается неоднородным линейным дифференциальным уравнением второго порядка с постоянными коэффициентами.
Замечание. Отметим, что в общем случае и могут быть функциями переменной . Но мы будем рассматривать только случай, когда и постоянные.
Если , то уравнение принимает вид:
. | (6.47) |
Уравнение (6.29) называется однородным линейным, дифференциальным уравнением второго порядка.
Теорема 6.1. (О структуре общего решения уравнения (6.45)).
Общее решение уравнения (6.45) имеет вид:
, | (6.48) |
где и - линейно независимые функции, удовлетворяющие уравнению (6.45), (т.е. являющиеся решениями этого уравнения) а и - произвольные постоянные.
Из этой теоремы следует, что для отыскания общего решения уравнения (9.45) нужно найти две функции и (линейно независимые), для которых выполняются равенства
, | (6.49) |
Функции и называются линейно зависимыми, если существует число такое, что для всех значений в рассматриваемом интервале выполняется тождественное соотношение
. | (6.50) |
Если такого не существует, то функции и называются линейно независимыми.
Доказательство. Докажем сначала, что (6.48) является решением дифференциального уравнения (6.47). Для этого подставим функцию (6.48) в уравнение (6.47), получим
= .
Обращение в ноль всего выражения является следствием равенства нулю выражений в круглых скобках в двух последних слагаемых, что является следствием тождеств (6.49).
Следовательно, выражение (6.48) является решением уравнения (6.47), и поскольку это решение содержит две произвольные постоянные, то оно является общим решением однородного уравнения (6.47). Теорема доказана.
Отметим, что требование линейной независимости функций и является обязательным. Действительно, предположим, что функции линейно зависимы. Тогда из равенства (6.50) следует, что . Подставим последнее равенство в решение (6.48), получим =
= . Если обозначить , тогда полученное решение примет вид , Эта функция, конечно, будет решением уравнения (6.47), однако это решение не является общим, так как содержит одну произвольную постоянную.
Пусть в линейном однородном уравнении (6.47) и - постоянные действительные числа.
Частное решение уравнения (6.47) будем искать в виде функции
. | (6.51) |
где - действительное или комплексное число, подлежащее определению. Дифференцируя по выражение (6.51), получим:
, . | (6.52) |
Внося выражения (6.51) и (6.52) в уравнение (6.47), будем иметь:
. | (6.53) |
Отсюда, учитывая, что , имеем:
. | (6.54) |
Алгебраическое уравнение (6.54) называется характеристическимуравнением однородного уравнения (6.47). Характеристическое уравнение и дает возможность найти . Уравнение (6.54) есть уравнение второй степени и потому имеет два корня. Обозначим их через и . Возможны три случая.
1) Корни и действительные и различные ().В этом случае по формуле (6.51) получим два частных решения уравнения (6.47) , , которые являются линейно независимыми. Действительно, если бы эти решения были линейно зависимы, то в интервале должно было бы выполняться тождество ( и одновременно не нули) или тождество . Отсюда , что невозможно, так как справа в последнем тождестве постоянное число, а слева функция переменной . По теореме 6.1 общее решение уравнения (6.47) будет
.
Дата добавления: 2015-07-14; просмотров: 316 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Дифференциальные уравнения второго порядка | | | Пример 7.2 |