Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Временная разность между данным и следующим уровнем.

Г) если |as|<1, |es|<1 – распределение нормального типа. | Чтобы убедиться, что теоретические частоты адекватно описывают эмпирические данные, на одном чертеже строим кривую нормального распределения и полигон частот. | Аналогично определяется эмпирическая линия регрессии у на х – ломаная с вершинами в точках с координатами | В зависимости от r имеем следующую интерпретацию связи | При этом и - соответственно межгрупповое и общее средние квадратические отклонения, равные | Точность построенной регрессионной модели определяется с помощью средней ошибки аппроксимации , равной | Способ 1. Этот способ основан на проверке гипотезы о значимости коэффициента линейной корреляции с помощью t – критерия Стьюдента. | Проверка статистическое значимости эмпирических данных, а следовательно принципиальная возможность построения регрессионной модели, производится с помощью F – критерия Фишера. | Оценка точности регрессионной модели производится также, как и в случае парной регрессии – с помощью средней ошибки аппроксимации (см. задачу 9, п. 7). | С помощью значений дельта – коэффициента и среднего коэффициента эластичности можно исключить из модели самый незначимый признак. Им признается тот, у которого одновременно |


Читайте также:
  1. B) разность в массе посаженного в печь куска теста и выпеченного хлеба
  2. D) Между двумя теплоносителями через газ
  3. I. По отношениям поземельным между помещиками
  4. II. ЦЕЛЕСООБРАЗНОСТЬ СОВЕРШЕНСТВОВАНИЯ ПРАВОВОГО РЕГУЛИРОВАНИЯ ПРОИЗВОДСТВА И РЕАЛИЗАЦИИ ПРОДУКТОВ ПИТАНИЯ, СОДЕРЖАЩИХ ГМО НА ТЕРРИТОРИИ САНКТ-ПЕТЕРБУРГА.
  5. II.7. СОВРЕМЕННАЯ ОТЕЧЕСТВЕННАЯ ИСТОРИЯ
  6. III МЕЖДУНАРОДНЫЙ ТУРИСТСКИЙ ФОРУМ
  7. III раздел. МЕЖДУНАРОДНЫЕ СОРЕВНОВАНИЯ, КОНФЕРЕНЦИИ, СУДЕЙСКИЕ СЕМИНАРЫ

Среднее значение абсолютного прироста равно:

.

Величина среднего значения коэффициента роста равна:

.

Среднее значение темпов роста подсчитывается по формуле:

.

Наконец, среднее значение темпов прироста рассчитывается следующим образом:

.

Переходим к решению задачи. Так как значения уровней приведены на определенную дату (конец месяца), временная разность между уровнями постоянная (1 месяц), то рассматриваемый ряд динамики является моментным с равноотстоящими уровнями.

Найдем числовые характеристики уровня ряда динамики. Результаты расчетов помещены в таблицу 13.

В качестве примера произведем анализ строки таблицы 13, соответствующей октябрю месяцу. В октябре 2008 года магазин реализовал продукции на 523,2 тыс. руб., что на 27,8 тыс. руб. больше по сравнению с сентябрем и на 148,6 тыс. руб. больше по сравнению с январем 2008 года. Следовательно, реализация продукции в октябре увеличилась в 1,0561 раза по сравнению с октябрем и в 1,3967 раза по сравнению с январем. Уровень реализации в октябре составил 105,6116% от сентябрьского и 139,669% от январского уровня реализации. Таким образом, продукции в октябре реализовано на 5,6116% больше по сравнению с сентябрем и на 39,669% больше по сравнению с январем месяцем. Величина абсолютной величины одного процента прироста составила 4,954 тыс. руб.

 


Таблица 13

, тыс. руб. , % , % |%|, тыс. руб.
С пред. месяцем С январем 2008 г. С пред. месяцем С январем 2008 г. С пред. месяцем С январем 2008 г. С пред. месяцем С январем 2008 г.
  374,6 -   -   -   -   -
  245,5 -129,1 -129,1 0,6554 0,6554 65,5366 65,5366 -34,4634 -34,4634 3,746
  304,6 59,1 -70 1,2407 0,8131 124,0733 81,3134 24,0733 -18,6866 2,455
  171,1 -133,5 -203,5 0,5617 0,4568 56,1720 45,6754 -43,8280 -54,3246 3,046
  210,8 39,7 -163,8 1,2320 0,5627 123,2028 56,2734 23,2028 -43,7266 1,711
  321,3 110,5 -53,3 1,5242 0,8577 152,4194 85,7715 52,4194 -14,2285 2,108
  244,7 -76,6 -129,9 0,7616 0,6532 76,1594 65,3230 -23,8406 -34,6770 3,213
  345,6 100,9 -29 1,4123 0,9226 141,2342 92,2584 41,2342 -7,7416 2,447
  495,4 149,8 120,8 1,4334 1,3225 143,3449 132,2477 43,3449 32,2477 3,456
  523,2 27,8 148,6 1,0561 1,3967 105,6116 139,6690 5,6116 39,6690 4,954
  385,3 -137,9 10,7 0,7364 1,0286 73,6430 102,8564 -26,3570 2,8564 5,232
  274,2 -111,1 -100,4 0,7117 0,7320 71,1653 73,1981 -28,8347 -26,8019 3,853

 


Найдем среднее значение уровней ряда динамики. Имеем: среднемесячный объем реализации продукции магазином составил в 2008 году

324,7 (тыс. руб.).

Так как

,

то заключаем, что ежемесячное падение объемов реализации продукции в 2008 году составляло в среднем 9,1 тыс. руб.

Среднее значение коэффициента роста равно

.

Это означает, что месячный уровень объема реализации составляет в среднем 0,972 от предыдущего месяца или (согласно формуле среднего значения темпов роста)

.

Итак, в среднем в месяц, объем продаж сокращался на 2,8% по сравнению с предыдущим месяцем, так как

.

Задача 12. По данным задачи 11 (рассмотреть данные 2008 года) построить уравнение линейной функции тренда.

На формирование значение уровней ряда динамики основное влияние оказывают долговременные факторы, формирующие общую, в длительной перспективе тенденцию развития признака. Результат действия этих факторов моделируется в виде функции тренда

.


Дата добавления: 2015-07-25; просмотров: 58 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
Для заметок| В частности, если тренд – линейный, то

mybiblioteka.su - 2015-2024 год. (0.007 сек.)