Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Точность построенной регрессионной модели определяется с помощью средней ошибки аппроксимации , равной

Верхний параметр, р равно 0,25 (квартиль), 0,1 (дециль), 0,01 (перцентиль). | Среднее значение (средняя арифметическая) | Находим шаг варьирования , то есть разность между любыми двумя соседними значениями случайной величины. Предполагается, что выборочной совокупности - постоянная величина. | Причем t – постоянная величина, значение которой определяется в зависимости от γ, в частности | Где - выборочная доля (m– количество элементов выборочной совокупности, обладающих интересующим нас признаком, n – объем выборочной совокупности), – предельная ошибка доли, равная | Для заметок | Г) если |as|<1, |es|<1 – распределение нормального типа. | Чтобы убедиться, что теоретические частоты адекватно описывают эмпирические данные, на одном чертеже строим кривую нормального распределения и полигон частот. | Аналогично определяется эмпирическая линия регрессии у на х – ломаная с вершинами в точках с координатами | В зависимости от r имеем следующую интерпретацию связи |


Читайте также:
  1. B тексте содержатся орфографические ошибки. Выпишите предложения с ошибками и исправьте их. Переведите текст на русский язык.
  2. ER-моделирование структуры предметной области
  3. III. Типы семей, особенности их влияния на воспитание детей. Модели негативных семейных взаимоотношений
  4. XXI. КОРОНАРНАЯ НЕДОСТАТОЧНОСТЬ. НАРУШЕНИЯ РИТМА СЕРДЦА
  5. XXII. СЕРДЕЧНАЯ НЕДОСТАТОЧНОСТЬ
  6. А как реагировать на свои ошибки, если по-хорошему?
  7. А какова причина того, что появляется горячая недостаточность?

,

При этом y и y* - соответственно эмпирическое и теоретическое (рассчитанное по модели) значение признака Y, соответствующее данному значению x признака X.

Степень влияния факторного признака X на результативный признак Y определяется с помощью индекса детерминации

.

9. Величины средней ошибки аппроксимации и индекса детерминации позволяют определить наиболее точную регрессионную модель. Ей считается та, у которой одновременно средняя ошибка аппроксимации стремится к минимуму, а индекс детерминации – к максимуму,

, .

Прогноз значения у происходит путем подстановки данного значения х в уравнение регрессии у на х. Аналогично, для прогноза значения х по заданному значению у, необходимо использовать уравнение регрессии х на у.


Таблица 10

    у на х х на у
Линейная
, ,
Параболическая
Показательная

Переходим к решению задачи. Вначале запишем исходные данные в виде корреляционной таблицы:

 

Х Y (5;9) (9;13) (13;17) (17;21) (21;25) (25;29)
           
(1;3)                
(3;5)                
(5;7)                
(7;9)                
(9;11)                
(11;13)                
(13;15)                
             

 

Строим корреляционное поле данных (рисунок 10)

 

Рис. 10

Производим все необходимые вычисления в ниже приведенной таблице. В клетке, стоящей на пересечении строки и столбца указаны следующие данные:

 

 
   
 

 
 
X


Y

(5;9) (9;13) (13;17) (17;21) (21;25) (25;29)
           
-2 -1        
(1;3)   -1                                         26,1111
                                   
                            -4     -21
(3;5)                                             22,6364
                                   
                                   
(5;7)                                              
                                   
                                   
(7;9)                                              
                                   
          -2                        
(9;11)                                              
                                   
          -18                        
(11;13)                                             8,333
                                   
    -16     -4                        
(13;15)                                              
                                   
    -50                              
                 
               
13,4286   7,2 5,25 3,7143 2,6 -    
                 
-66 -24     -2 -21 -108    
307,5657 81,92 1,6 19,22 66,6514 176,4 653,3571    
                   
               
                 
                 
                 
                 
                 
                 
                 
                 
2,5974 2,3026 1,9741 1,6582 1,3122 0,9555 -    
18,1817 18,4207 19,7408 13,2658 9,1853 9,5551 88,3494    
127,2718 202,6275 296,1122 252,0507 211,2620 257,9881 1347,3123    

 

у
    26,1111               3,2624 29,3612 58,7225
    22,6364               3,1196 34,3151 137,2605
                    2,8332 28,3321 169,9928
                    2,7081 10,8322 86,6576
                    2,4849 19,8793 198,7925
    8,333               2,1203 6,3608 76,3295
                    1,9459 9,7296 136,2137
  -               - 138,8103 863,9692

 


Строим эмпирические линии (рисунок 11; на нем сплошной линией изображена эмпирическая линия регрессии у на х, а пунктирной – эмпирическая линия регрессии х на у) регрессии и делаем первоначальные выводы о форме корреляционной зависимости.

 

Рис. 11

 

Так как с ростом значения х значения у почти монотонно убывают, то скорее всего имеет место линейная обратная корреляционная зависимость.

Определим величину коэффициента линейной корреляции. Среднее значение признаков найдем согласно определению, а дисперсии рассчитаем по формуле разностей. Имеем:

;

;

;

;

 

;

;

;

.

Среднее значение произведения

.

Тогда числитель коэффициента линейной корреляции, рассчитанный первым способом, равен:

.

Найдем величину μ методом моментов. Используя соответствующие определения и расчетную таблицу, получаем:

.

Итак, коэффициент линейной корреляции равен:

,

что говорит о том, что рассматриваемая зависимость является линейной обратной.

Переходим к вычислению корреляционного отношения. Межгрупповая дисперсия равна

,

отсюда

;

.

Итак, корреляционное отношение равно

.

Найденное значение говорит о тесной корреляционной зависимости между рассматриваемыми признаками.

Проверим с вероятностью 0,95 гипотезу о статистической значимости эмпирических данных. Наблюдаемое значение критерия Стьюдента равно.

.

Критическое значение находим по таблице 3 приложения для уровня значимости α = 1-0,95=0,05 и числа степеней свободы ν = 50 – 2= 48:

.

Имеем:

17,0664>2,02,

следовательно гипотеза о статистической значимости эмпирических данных принимается с указанной вероятностью.

Находим параметры регрессионных моделей (см. таблицу 10). Результаты вычислений представим в таблицах:

 

Линейная корреляционная зависимость
Система нормальных уравнений у на х Система
Решение системы ,
Уравнение
х на у Система
Решение системы ,
Уравнение
Упрощенный способ у на х ρ
Уравнение ,
х на у ρ
Уравнение ,

 

Параболическая корреляционная зависимость
у на х Система
Решение системы , ,
Уравнение
х на у Система
Решение системы , ,
Уравнение
Показательная корреляционная зависимость
у на х Система
Решение системы , , ,
Уравнение
х на у Система
Решение системы , , ,
Уравнение

 

По каждой из полученных моделей находим величину средней ошибки аппроксимации и индекса детерминации (расчеты приведены в таблице 11). Имеем: для линейной модели

, или 80,12%;

для параболической модели

, или 79,95%;

для показательной модели

, или 79,06%.

Видим, что одновременно минимум средней ошибки аппроксимации и максимум индекса детерминации соответствует линейной регрессионной модели. Следовательно, она признается наиболее точной.

Графики линейной зависимости приведены на рисунке 12, параболической – на рисунке 13, а показательной – на рисунке 14. На них сплошной чертой изображены линии регрессии у на х, а пунктирной – х на у.

Строим прогноз признаков. Имеем: при стоимости основных производственных фондов 2,5 млн. руб., затраты на капитальный ремонт составят

(%).

Если затраты на капитальный ремонт составляют 0,52% от ОПФ, то стоимость основных производственных фондов должна составлять

(млн. руб.)

 


Таблица 11

у Линейная модель Параболическая модель Показательная модель
    -4,8 23,04 3,8833 -1,8833 3,5469 0,9417 3,6100 -1,6100 2,5922 0,8050 3,6887 1,6887 2,8515 0,8443
  -4,8 23,04 1,8000 0,2000 0,0400 0,1000 2,6556 -0,6556 0,4298 0,3278 2,6524 0,6524 0,4256 0,3262
    -2,8 7,84 5,9667 -1,9667 3,8678 0,4917 5,1586 -1,1586 1,3424 0,2897 5,1298 1,1298 1,2764 0,2824
  -2,8 7,84 3,8833 0,1167 0,0136 0,0292 3,6100 0,3900 0,1521 0,0975 3,6887 -0,3113 0,0969 0,0778
  -2,8 7,84 1,8000 2,2000 4,8400 0,5500 2,6556 1,3444 1,8074 0,3361 2,6524 -1,3476 1,8161 0,3369
    -0,8 0,64 8,0500 -2,0500 4,2025 0,3417 7,3014 -1,3014 1,6935 0,2169 7,1340 1,1340 1,2859 0,1890
  -0,8 0,64 5,9667 0,0333 0,0011 0,0056 5,1586 0,8414 0,7079 0,1402 5,1298 -0,8702 0,7572 0,1450
  -0,8 0,64 3,8833 2,1167 4,4803 0,3528 3,6100 2,3900 5,7120 0,3983 3,6887 -2,3113 5,3423 0,3852
    1,2 1,44 10,1333 -2,1333 4,5511 0,2667 10,0383 -2,0383 4,1545 0,2548 9,9212 1,9212 3,6911 0,2402
  1,2 1,44 8,0500 -0,0500 0,0025 0,0062 7,3014 0,6986 0,4881 0,0873 7,1340 -0,6660 0,7500 0,1083
  1,2 1,44 5,9667 2,0333 4,1344 0,2542 5,1586 2,8414 8,0735 0,3552 5,1298 -2,8702 8,2381 0,3588
    3,2 10,24 10,1333 -0,1333 0,0178 0,0133 10,0383 -0,0383 0,0015 0,0038 9,9212 -0,0788 0,0062 0,0079
  3,2 10,24 8,0500 1,19500 3,8025 0,1960 7,3014 2,6986 7,2827 0,2699 7,1340 -2,8660 8,2140 0,2866
    5,2 27,04 12,2167 -0,2167 0,0469 0,0181 13,3693 -1,3693 1,8751 0,1141 13,7974 1,7974 3,2307 0,1498
  5,2 27,04 10,1333 1,8667 3,4844 0,1556 10,0383 1,9617 3,8484 0,1635 9,9212 -2,0788 4,3213 0,1732
    7,2 51,84 12,2167 1,7833 3,1803 0,1274 13,3693 0,6307 0,3977 0,0450 13,7974 0,2026 0,0410 0,0145
- - 202,24 - - 40,2122 3,8489 - - 40,5588 3,9051 - - - 3,9261

 


Рис. 12

 

Рис. 13

Рис. 14

 

Задача 10. Имеются следующие показатели по десяти предприятиям некоторой отрасли (на 31.12.2007):

 

Номер предприятия Стоимость промышленно – производственных основных фондов, тыс. руб. Валовая продукция в оптовых ценах предприятия, тыс. руб. Среднесписочная численность промышленно – производственного персонала, чел. Среднесписочная численность рабочих, чел.
         
         
         
         
         
         
         
         
         
         

 

Приняв стоимость основных промышленно – производственных основных фондов за результативный признак, а остальные показатели – за факторные признаки, необходимо:

а) исключив один из факторных признаков, перейти к двухфакторной регрессии;

б) вычислить множественный коэффициент корреляции и сделать выводы о форме и силе корреляционной зависимости;

в) с помощью F – критерия Фишера с вероятностью 0,95 оценить статистическую значимость эмпирических данных;

г) вычислить значение общего индекса детерминации;

д) двумя способами получить уравнение линейной модели множественной регрессии;

е) по величине средней ошибки аппроксимации оценить точность линейной модели;

ж) подсчитать дельта – коэффициенты;

з) найти значения коэффициентов эластичности;

и) исключить из модели один из факторных признаков и перейти к модели с парной регрессией.

 

1. Эмпирические данные выборки объема n принято записывать в виде таблицы, в которой Y – результативный признак со значениями , а , ,…, - факторные признаки со значениями , i=1,2,…, n, j=1,2,… k:

 

  Y
 
 
n

 


Дата добавления: 2015-07-25; просмотров: 151 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
При этом и - соответственно межгрупповое и общее средние квадратические отклонения, равные| Способ 1. Этот способ основан на проверке гипотезы о значимости коэффициента линейной корреляции с помощью t – критерия Стьюдента.

mybiblioteka.su - 2015-2024 год. (0.029 сек.)