Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Проверка независимости значений уровней случайной компоненты.

Читайте также:
  1. I Проверка несущей способности простенков.
  2. NN.3.2 Проверка сжатого бетона
  3. Автокорреляция уровней временного ряда
  4. Анализ граничных значений
  5. В. Проверка.
  6. Версии и их проверка
  7. Взаимосоотношения уровней жизни и социально-психологических характеристик

 

Проверка независимости значений уровней случайной компоненты осуществляется для выявления существующей автокорреляции остаточной последовательности. Эта проверка может производиться по ряду критериев.

Наиболее распространенным является d-критерий Дарбина - Уотсона. Расчетное значение этого критерия находится по формуле:

Расчетное значение d-критерия в интервале от 2 до 4 свидетельствует об отрицательной связи. В этом случае его надо преобразовать по формуле:

d' = 4 - d

и в дальнейшем использовать значение d' Расчетное значение критерия d или d' сравнивается с верхним d2 и нижним d1 критическими значениями статистики Дарбина - Уотсона.

Для 5%-го уровня значимости эти значения для ряда количества определяемых параметров р приведены в таблице:

Таблица №10

N p=1 p=2 p=3
d1 d2 d1 d2 d1 d2
  1,08 1,36 0,95 1,54 0,82 1,75
  1,2 1,41 1,1 1,54   1,68
  1,35 1,49 1,28 1,57 1,21 1,65

Если расчетное значение критерия d больше верхнего табличного значения d2, то гипотеза о независимости уровней остаточной последовательности, то есть об отсутствии в ней автокорреляции принимается.

Если расчетное значение d меньше нижнего табличного d1 то эта гипотеза отвергается и модель считается неадекватной.

Если значение d находится между значениями d1 и d2, включая сами эти значения, то считается, что нет достаточных оснований делать тот или иной вывод и необходимы дальнейшие исследования, например по большему числу наблюдений.

Вывод об адекватности модели делается, если все 4 проверки свойств остаточной последовательности дают положительный результат. Для адекватных моделей имеет смысл ставить задачу оценки их точности.

В данной задаче:

d =2,76 - критерий Дарбина-Уотсона.

Расчетное значение d-критерия свидетельствует об отрицательной связи.

d' = 1,24 и d1= 1,1, d2=l,54.

Так как расчетное значение критерия d находится между значениями d1 и d2, то считается, что нет достаточных оснований делать тот или иной вывод и необходимы дальнейшие исследования.


Дата добавления: 2015-08-05; просмотров: 77 | Нарушение авторских прав


Читайте в этой же книге: Введение. | Постановка задачи. | Приведение исходного нелинейного уравнения регрессии к линейному. | Определение параметров уравнения регрессии. Построение уравнения регрессии. | Проверка случайности колебаний уровней остаточной последовательности. | Проверка соответствия распределения случайной компоненты нормальному закону распределения. | Проверка отсутствия или наличия гетероскедастичности исследуемой модели. | Метод Ирвина. | Определение оптимального вида линии тренда. Прогноз показателей. |
<== предыдущая страница | следующая страница ==>
Проверка равенства математического ожидания случайной компоненты нулю.| Определение точности модели.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)