Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Общее уравнение плоскости вывод исследование

Читайте также:
  1. II. 5.1. Общее понятие о группах и коллективах
  2. III. 11.1. Общее понятие о памяти
  3. IV. Выводы
  4. IV. Исследование подсознательного в обществе: аналитическая социальная психология и характерология
  5. IX. ИССЛЕДОВАНИЕ РЕЧЕВОЙ МОТОРИКИ
  6. P-электронов расположена выше и ниже плоскости колец
  7. V. ОБЪЕКТИВНОЕ ИССЛЕДОВАНИЕ.

Всякое уравнение вида , где A, B, C и D – некоторые действительные числа, причем А, В и C одновременно не равны нулю, определяет плоскость в заданной прямоугольной системе координат Oxyz в трехмерном пространстве, и всякая плоскость в прямоугольной системе координат Oxyz в трехмерном пространстве определяется уравнением вида при некотором наборе чисел A, B, C и D.

Теорема состоит из двух частей. В первой части нам дано уравнение и нужно доказать, что оно определяет плоскость. Во второй части, нам дана некоторая плоскость и требуется доказать, что ее можно определить уравнением при некотором выборе чисел А, В, С и D.

Начнем с доказательства первой части теоремы.

Так как числа А, В и С одновременно не равны нулю, то существует точка , координаты которой удовлетворяют уравнению , то есть, справедливо равенство . Отнимем левую и правую части полученного равенства соответственно от левой и правой частей уравнения , при этом получим уравнение вида эквивалентное исходному уравнению . Теперь, если мы докажем, что уравнение определяет плоскость, то этим будет доказано, что эквивалентное ему уравнение также определяет плоскость в заданной прямоугольной системе координат в трехмерном пространстве.

Равенство представляет собой необходимое и достаточное условие перпендикулярности векторов и . Иными словами, координаты плавающей точки удовлетворяют уравнению тогда и только тогда, когда перпендикулярны векторы и . Тогда, учитывая факт, приведенный перед теоремой, мы можем утверждать, что если справедливо равенство , то множество точек определяет плоскость, нормальным вектором которой является , причем эта плоскость проходит через точку . Другими словами, уравнение определяет в прямоугольной системе координат Oxyz в трехмерном пространстве указанную выше плоскость. Следовательно, эквивалентное уравнение определяет эту же плоскость. Первая часть теоремы доказана.

Приступим к доказательству второй части.

Пусть нам дана плоскость, проходящая через точку , нормальным вектором которой является . Докажем, что в прямоугольной системе координат Oxyz ее задает уравнение вида .

Для этого, возьмем произвольную точку этой плоскости. Пусть этой точкой будет . Тогда векторы и будут перпендикулярны, следовательно, их скалярное произведение будет равно нулю: . Приняв , уравнение примет вид . Это уравнение и задает нашу плоскость. Итак, теорема полностью доказана.


Дата добавления: 2015-07-20; просмотров: 189 | Нарушение авторских прав


Читайте в этой же книге: Экзамен по МАТАНУ | Обратная матрица, вычисление, приложение. | Теорема о существовании и единственности обратной матрицы. | Метод Гаусса решения систем линейных уравнений | Теорема 1 (о нетривиальных решениях однородной системы) | Скалярное произведение векторов, свойства, приложения. | Смешанное произведение векторов | Каноническое и общее уравнение прямой в пространстве | Цилиндрические и канонические поверхности | Первый замечательный предел |
<== предыдущая страница | следующая страница ==>
Вывести параметрическое и каноническое уравнение прямой на плоскости.| Эллипс, гипербола парабола. Каноническое уравнение.

mybiblioteka.su - 2015-2024 год. (0.006 сек.)