Читайте также: |
|
Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:
Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.
Свойства обратной матрицы
, где обозначает определитель.
для любых двух обратимых матриц и .
где обозначает транспонированную матрицу.
для любого коэффициента .
Если необходимо решить систему линейных уравнений , (b — ненулевой вектор) где — искомый вектор, и если существует, то . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.
Нахождение с помощью матрицы алгебраических дополнений
— транспонированная матрица алгебраических дополнений;
Полученная матрица A−1 и будет обратной. Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.
Иначе говоря, обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной на транспонированную матрицу алгебраических дополнений элементов исходной матрицы.
Дата добавления: 2015-07-20; просмотров: 208 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Экзамен по МАТАНУ | | | Теорема о существовании и единственности обратной матрицы. |