Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Обратная матрица, вычисление, приложение.

Читайте также:
  1. И конечно же есть обратная сторона, делая такой туманный шаг с музыкой, насколько для вас важно создать альбом специально для издании на виниле?
  2. Обратная задача теории погрешностей.
  3. Обратная связь
  4. Обратная связь
  5. Обратная связь и результаты
  6. Обратная связь с медиа

Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

Квадратная матрица обратима тогда и только тогда, когда она невырожденная, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует.

Свойства обратной матрицы

, где обозначает определитель.

для любых двух обратимых матриц и .

где обозначает транспонированную матрицу.

для любого коэффициента .

Если необходимо решить систему линейных уравнений , (b — ненулевой вектор) где — искомый вектор, и если существует, то . В противном случае либо размерность пространства решений больше нуля, либо их нет вовсе.

Нахождение с помощью матрицы алгебраических дополнений

 

— транспонированная матрица алгебраических дополнений;

Полученная матрица A−1 и будет обратной. Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.

Иначе говоря, обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной на транспонированную матрицу алгебраических дополнений элементов исходной матрицы.


Дата добавления: 2015-07-20; просмотров: 208 | Нарушение авторских прав


Читайте в этой же книге: Метод Гаусса решения систем линейных уравнений | Теорема 1 (о нетривиальных решениях однородной системы) | Скалярное произведение векторов, свойства, приложения. | Смешанное произведение векторов | Вывести параметрическое и каноническое уравнение прямой на плоскости. | Общее уравнение плоскости вывод исследование | Эллипс, гипербола парабола. Каноническое уравнение. | Каноническое и общее уравнение прямой в пространстве | Цилиндрические и канонические поверхности | Первый замечательный предел |
<== предыдущая страница | следующая страница ==>
Экзамен по МАТАНУ| Теорема о существовании и единственности обратной матрицы.

mybiblioteka.su - 2015-2025 год. (0.005 сек.)