Читайте также:
|
|
Система из m линейных уравнений с n неизвестными х1, х2, … хn имеет вид
a11 x1 + a12 x2 +…+ a1n xn = b1
a21 x1 + a22 x2 +…+ a2n xn = b2
………………………………
am1 x1 + am2 x2 +…+ amn xn = bm
где числа aij (i = 1,m; j = 1, n) называются коэффициентами системы, а числа b1,b2,…bm
называют свободнымичленами. Решением системы линейных уравнений называется такой набор чисел (а1,а2,…аn), что при его подстановке в систему вместо соответствующих неизвестных каждое из уравнений системы обращается в тождество.
В случае систем большого числа уравнений выгодно пользоваться методом Гаусса, который заключается в последовательном исключении неизвестных. Перед тем как приступить к решению системы, необходимо изменить порядок уравнений, выбрав первым такое уравнение, в котором коэффициент при х1 не равен 0.
a11 x1 + a12 x2 + a13 x3 = b1 (1)
a21 x1 + a22 x2 + a23 x3 = b2 (2)
a31 x1 + a32 x2 + a33 x3 = b3 (3)
Делим уравнение (1) на a11 и умножаем на a21
a21 x1 + a12 x2 a21 / a11 + a13 x3 a21 / a11 = b1 a21 / a11 (1׳)
Теперь из уравнения (2) отнимаем уравнение (1׳)
(a22 - a12 a21 / a11 )x2 + (a23 - a13 a21 / a11 )x3 = b2 - b1 a21 / a11
Получаем уравнение a׳22 x2 + a׳23 x3 = b׳2 (2׳)
Следующий шаг: Делим уравнение (1) на a11 и умножаем на a31
a31 x1 + a12 x2 a31 / a11 + a13 x3 a31 / a11 = b1 a31 / a11 (1׳׳)
Отнимаем от уравнения (3) уравнение (1׳׳) и получаем
(a32 - a12 a31 / a11 )x2 + (a33 - a13 a31 / a11 )x3 = b3 - b1 a31 / a11
Или a׳32 x2 + a׳33 x3 = b׳3 (3׳)
Следующий шаг: Делим уравнение (2׳) на a׳22 и умножаем на a׳32
a׳32 x2 + a׳23 a׳32 / a׳22 x3 = b׳2 a׳32 / a׳22
Отнимаем из уравнения (3׳) уравнение (2׳׳) и получаем
(a׳33 – a׳23 a׳32 / a׳22 )x3 = b׳3 – b׳2 a׳32 / a׳22 (3׳׳)
Или a׳33 x3 = b׳׳3
Отсюда x3 = b׳׳3 / a׳33
Дата добавления: 2015-07-15; просмотров: 79 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Линейные пространства. Определение линейного пространства. | | | Решение систем линейных алгебраических уравнений методом Крамера. |