Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Изометрии

Определение. Линейный оператор f евклидова пространства Е в себя называется изометрией, если он сохраняет скалярное произведение, т. е. если

(7.18)

Изометрии в комплексном евклидовом пространстве называются унитарными операторами, а в действительном – ортогональными.

Теорема 7.10. Если l – собственное значение изометрии, то |l|=1.

Замечание. Собственные значения ортогонального оператора равны 1 или –1. Ортогональный оператор в пространстве четной размерности может и не иметь собственных значений, но в пространстве нечетной размерности имеет хотя бы одно.

Теорема 7.11. Для того чтобы линейный оператор был изометрией, необходимо и достаточно, чтобы он сохранял длины векторов.

Теорема 7.12. Изометрия любой ортонормированный базис пространства переводит в ортонормированный базис. Обратно, если линейный оператор некоторый ортонормированный базис пространства переводит в ортонормированный базис, то f – изометрия.


Дата добавления: 2015-07-15; просмотров: 91 | Нарушение авторских прав


Читайте в этой же книге: Определение размерности линейного пространства. Теорема о связи базиса и размерности. Следствия. | Определение матрицы линейного оператора. | Операции над линейными операторами | Определение и свойства собственных векторов. | Свойства собственных векторов | Правило нахождения собственных векторов | Канонический вид квадратичной формы | Действительные евклидовы пространства | Комплексные евклидовы (унитарные) пространства | Перемножаемых векторов |
<== предыдущая страница | следующая страница ==>
Самосопряженные линейные операторы| Ортогональные операторы на евклидовой плоскости

mybiblioteka.su - 2015-2024 год. (0.005 сек.)