Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Определение матрицы линейного оператора.

Читайте также:
  1. B. ПРОГРАММНОЕ ОПРЕДЕЛЕНИЕ НЕЙТРАЛЬНОГО ПОЛОЖЕНИЯ КОРОБКИ ПЕРЕДАЧ ДЛЯ АВТОМОБИЛЕЙ С НЕАВТОМАТИЧЕСКОЙ ТРАНСМИССИЕЙ (петля фиолетового провода должна быть перерезана)
  2. I. Измерение частотной характеристики усилителя и определение его полосы пропускания
  3. III. Определение соответствия порядка учета требованиям специальных правил, обстоятельств, затрудняющих объективное ведение бухгалтерской отчетности.
  4. XI. Определение терминов 1 страница
  5. XI. Определение терминов 2 страница
  6. XI. Определение терминов 3 страница
  7. XI. Определение терминов 4 страница

Пусть в линейном пространстве над полем задан базис

(4.8)

и пусть – линейный оператор (читается так: в себя). Построим систему векторов

(). (4.9)

Каждый из векторов системы (4.9) можно разложить по базису (4.8):

(4.10)

 

Сокращенно система (4.10) записывается одним равенством:

. (4.11)

Расположим числа в матрицу А по нашей договоренности: верхний индекс обозначает номер строки, а нижний – номер столбца:

Заметим, что столбцы полученной матрицы А являются координатными столбцами образов векторов базиса (4.8) в том же базисе. Обозначим

[ ] = .

Равенство (4.11) можно переписать и так: , откуда, руководствуясь правилом цепочки, (4.11) записываем в матричном виде:

. (4.12)

Матрицей линейного оператора в некотором базисе называется матрица А, столбцами которой являются координатные столбцы образов базисных векторов в том же базисе. Это матрица , элементы которой удовлетворяют системе равенств (4.10) или (4.11), а сама матрица удовлетворяет матричному равенству (4.12).


Дата добавления: 2015-07-15; просмотров: 99 | Нарушение авторских прав


Читайте в этой же книге: Сложение матриц | Умножение матрицы на число | Определение определителя квадратной матрицы | Основные леммы об определителях | Основные свойства определителей | Правило Крамера решения систем линейных уравнений | Однородные системы линейных уравнений | Простейшие следствия из аксиом. | Простейшие свойства линейной зависимости | Матричный критерий линейной зависимости и независимости. |
<== предыдущая страница | следующая страница ==>
Определение размерности линейного пространства. Теорема о связи базиса и размерности. Следствия.| Операции над линейными операторами

mybiblioteka.su - 2015-2024 год. (0.005 сек.)