Читайте также:
|
|
Пусть в линейном пространстве над полем задан базис
(4.8)
и пусть – линейный оператор (читается так: в себя). Построим систему векторов
(). (4.9)
Каждый из векторов системы (4.9) можно разложить по базису (4.8):
(4.10)
Сокращенно система (4.10) записывается одним равенством:
. (4.11)
Расположим числа в матрицу А по нашей договоренности: верхний индекс обозначает номер строки, а нижний – номер столбца:
Заметим, что столбцы полученной матрицы А являются координатными столбцами образов векторов базиса (4.8) в том же базисе. Обозначим
[ ] = .
Равенство (4.11) можно переписать и так: , откуда, руководствуясь правилом цепочки, (4.11) записываем в матричном виде:
. (4.12)
Матрицей линейного оператора в некотором базисе называется матрица А, столбцами которой являются координатные столбцы образов базисных векторов в том же базисе. Это матрица , элементы которой удовлетворяют системе равенств (4.10) или (4.11), а сама матрица удовлетворяет матричному равенству (4.12).
Дата добавления: 2015-07-15; просмотров: 99 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Определение размерности линейного пространства. Теорема о связи базиса и размерности. Следствия. | | | Операции над линейными операторами |