Читайте также:
|
|
Пусть в линейном пространстве V задан некоторый базис, тогда каждый вектор можно разложить по этому базису.
Координатным столбцом вектора в заданном базисе будем называть столбец , составленный из координат вектора в этом базисе.
Лемма 3.1. Для того чтобы векторы были линейно зависимыми, необходимо и достаточно, чтобы их координатные столбцы в некотором базисе были линейно зависимыми.
Теорема 3.1 (матричный критерий). Для того чтобы система векторов была линейно зависимой, необходимо и достаточно, чтобы ранг матрицы, составленной из координатных столбцов этих векторов в некотором базисе, был меньше количества векторов.
Для того чтобы система векторов была линейно независимой, необходимо и достаточно, чтобы ранг матрицы, составленной из координатных столбцов этих векторов, был равен их количеству.
Доказательство вытекает из леммы 3.1 и теоремы 2.4.
Дата добавления: 2015-07-15; просмотров: 201 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Простейшие свойства линейной зависимости | | | Определение размерности линейного пространства. Теорема о связи базиса и размерности. Следствия. |