Читайте также:
|
|
Понятие средней величины
Средняя величина – это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.
Вычисление среднего – один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.
Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.
Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.
Виды средних и способы их вычисления
Правильное применение средних возможно лишь на основе предварительной группировки: выделения качественно однородных совокупностей и расчленения явления на части в зависимости от различия условий, под влиянием которых явление складывается.
Под средней величиной в статистике понимают показатель, который характеризует типичный уровень изменяющегося признака в расчете на единицу однородной совокупности в конкретных условиях места и времени.
При изучении отдельных видов средних величин рекомендуется четко представлять методику их расчета и область применения. Наиболее распространенной формой средних величин является средняя арифметическая, расчет которой производится путем деления суммы всех значений изучаемого признака на их количество.
Формула расчета:
,
где – среднее значение изучаемого признака;
– конкретное значение этого признака;
– число единиц, значение признака которых изучается.
Расчет средней по данной формуле называется способом простой средней арифметической.
Если какое-то значение признака повторяется у нескольких единиц, то в этом случае формула расчета средней арифметической имеет такой вид:
,
где – частота повторения отдельных вариантов признака.
Данная формула носит название средней арифметической взвешенной.
Средняя хронологическая используется в тех случаях, когда имеются данные наблюдения на определенные моменты времени; ее расчетная формула имеет вид:
.
Средняя геометрическая используется для анализа темпов роста явлений и вычисляется по следующим формулам:
,
,
где – первый (базисный) уровень ряда динамики;
– последний уровень ряда динамики;
– число уровней (или периодов);
– цепные коэффициенты роста данного ряда динамики.
Взвешенные средние широко применяются при обработке данных текущего наблюдения по производственным участкам и цехам предприятия, обобщении материалов отчетности предприятий и организаций.
Средняя гармоническая взвешенная определяется по формуле:
Х=М/ (М/х), где М=х∙f.
Выбор вида средней зависит от задачи, стоящей перед исследователем, и характера исходных данных. Если имеются варианты и частота, то для расчета средней величины применяется средняя арифметическая. В тех случаях, когда имеются варианты и произведения вариант на частоты (х∙f), а частоты неизвестны, для расчета средней величины используется средняя гармоническая.
Средняя гармоническая используется в тех случаях, когда следует исчислить среднюю из величин, обратно пропорциональных изучаемому явлению.
Дата добавления: 2015-07-15; просмотров: 110 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Формулы для вычислений | | | Структурные средние |