Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Теорема (б.д.).

Читайте также:
  1. Вторая теорема Больцано-Коши (о промежуточных значениях непрерывной функции).
  2. Интегральная теорема Лапласа.
  3. Лекция 5. Законы сохранения. Теорема Нетер.
  4. Предельная теорема, предельная ошибка
  5. Принцип компактности отрезка (теорема Больцано - Коши)
  6. Теорема 1 (свойства предела функции).

Пустьфункция у=f(x) определена и непрерывна на отрезке [a,b] и является на нем строго возрастающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная на отрезке [p,q], где p=f(a), q=f(b), причем эта функция строго возрастающая и непрерывная в промежутке [p,q].

Замечание 1. Аналогичная теорема имеет место для строго убывающих функций:

Пустьфункция у=f(x) определена и непрерывна на отрезке [a,b] и является на нем строго убывающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная на отрезке [p,q], где p=f(b), q=f(а), причем эта функция строго убывающая и непрерывная в промежутке [p,q].

Замечание 2. Справедливы также следующие утверждения.

Утверждение 1.

Пустьфункция у=f(x) определена и непрерывна в промежутке (a,b) и является на нем строго возрастающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная в промежутке (p,q), где p= , q= , причем эта функция строго возрастающая и непрерывная в промежутке (p,q)

Утверждение 2.

Пустьфункция у=f(x) определена и непрерывна в промежутке (a,b) и является на нем строго убывающей. Тогда у функции у=f(x) есть обратная функция х=g(y), определенная в промежутке (p,q), где p= , q= , причем эта функция строго убывающая и непрерывная в промежутке (p,q).

Замечание 3. Некоторые из чисел a,b,p,q могут быть несобственными.


Дата добавления: 2015-07-11; просмотров: 135 | Нарушение авторских прав


Читайте в этой же книге: Непрерывность функции. Классификация точек разрыва. | Пример. | Арифметические операции над непрерывными функциями. | Примеры непрерывных функций. | Точки разрыва и их классификация. | Свойства функций, непрерывных в замкнутом промежутке. | Вторая теорема Больцано-Коши (о промежуточных значениях непрерывной функции). |
<== предыдущая страница | следующая страница ==>
Равномерная непрерывность функций.| Непрерывность элементарных функций (продолжение).

mybiblioteka.su - 2015-2024 год. (0.006 сек.)