Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

The order of modeling of measurements and analysis of its results

Читайте также:
  1. A) Order the words to make sentences.
  2. Abnormal results
  3. According to results of the event the winners will be awarded with diplomas and gifts.
  4. ACKNOWLEDGEMENT OF ORDER
  5. ACKNOWLEDGEMENT OF ORDER
  6. Aerobe:an organism that utilizes atmospheric oxygen in its metabolic pathways. An organism that must have oxygen in order to survive is an obligate aerobe.
  7. AIMS AND PRINCIPLES OF MORPHEMIC AND WORD-FORMATION ANALYSIS

DETECTION OF AMPLITUDE-MODULATED SIGNALS

Purpose of work: To learn the fundamental principles of amplitude-modulated signal detection, explore modes of amplitude-modulated signal detectors on the basis of bipolar transistor using modeling in program Electronics Workbench.

 

The order of modeling of measurements and analysis of its results

1. Explore amplitude collector detector.

1.1. To study the collector detector of AM-oscillation build scheme in accordance with Fig. 5.3. With key [0] disable the heterodyne.

1.2. Transmit on the base of bipolar transistor AM-signal with parameters: frequency of bearing oscillation fb=2 kHz; frequency of modulation Fmod=4 Hz; modulation coefficient M=0,5; amplitude of bearing oscillation Uin.b according to a table 5.1.

 

Values of parameters control using oscilloscope

 

1.3. Measure the maximum Uout.max and minimal Uout.min values of output signal of the detector on collector of bipolar transistor. The measured values add to your table. 5.1. If the value Uout. max and Uout. mon a little differ from the constant component of signal Uout 0,g, their deviation from the constant component should be measured using the oscilloscope AC mode.

Table 5.1

Uin.b, V                 2,5
Uout.max, mV -22.26 -26.75 -30.53 -32.84 -34.48 -35.57 7.59 2.47 0.291
Uout.min, mV -29.05 -31.25 -33.12 -35.11 35.66 36.06 -5.6 -1.09 -0.256
Uout0, mV -51.31 -29 -31.8 -33.9 -35.07 -35.8 0.9 0.69 17.24
Uout1, mV 3.4 2.35 1.3 1.08 0.59 0.245 6.6 1.78 0.274
Kdet 0.09 0.075 0.052 0.054 0.039 0.0245 1.32 0.712 219.44
Uout 0 theor LD, mV -40 -10 -26.1 -29 -15.1 -30 0.81 0.5  
Kdet.theor LD                  
Uout 0 theor KD, mV -36 -8 -21 -26 -13 -26 0.63 0.42  
Kdet. theor KD 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

 

1.4. From the measured values ​​determine:

- constant component of output signal

 

Uout0=(Uout.max+ Uout min)/2 (5.6)

- amplitude of the variable component of output signal

Uout1=(Uout.max- Uout min)/2 (5.7)

- detection coefficient

(5.8)

and put their values ​​to the table. 5.1.

1.5. Calculate the theoretical value:

- constant component of the linear output signal of detector using formula (5.1);

- coefficient of linear detection of detector using formula (5.2);

- constant component of output signal of quadratic detectors using (5.3);

- detection coefficient of quadratic detector using formula (5.5).

For calculation use the following approximation VAC of bipolar transistor:

- at a piece-wise linear approximation:

(5.9)

- at a power approximation:

Calculation results add to your table. 5.1.

1.6. Compare experimental and theoretical values ​​of output signal constant and detection coefficient of detector and make conclusions.

2. Explore the synchronous amplitude detector based on bipolar transistor.

2.1. For investigation of the synchronous detector of AM-oscillations in the circuit (Fig. 5.3) connect the heterodyne key [Q].

2.2. Transmit on the base of bipolar transistor AM-signal with parameters: frequency of bearing oscillation fb=2 kHz; frequency of modulation Fmod=5 Hz; modulation coefficient M=0,5; amplitude of bearing oscillation Uin.b according to a table 5.1.

Values of parameters control using oscilloscope.

The signal parameters of heterodyne: oscillation frequency f het = 2 kHz; phase of oscillations φ=0; effective voltage Uhet ­according the table 5.2.

2.3. Measure the maximum Uout. max and minimal Uout.min value of output signal of detector on the collector of bipolar transistor.

The measured values add to your table. 5.2.

 

Table 5.2

Uhet, mV                  
Uin.b, mV               2,5 2,5
Uout.max, mV 35.56 35.56 27.78 9.6 9.6 1.15 2.71 0.23 0.51
Uout.min, mV -18.91 -21.46 -18.72 -4.26 -4.36 -3.195 -1.51 -0.217 -0.284
Uout 0, mV 8.3 7.05 4.53 2.67 2.62 0.5001 0.6 0.225 0.113
Uout 1, mV 27.23 28.51 23.25 6.93 6.98 4.01 2.11 0.225 0.398
Kdet 2.723 2.851 2.325 1.386 1.396 1.02 0.84 0.18 0.318
Uout 0 theor, mV 13.33 13.33 19.165 32.8 32.8 39.13 39.57 39.82 39.61
Kdet.theor                  

 

If the value of Uout.max and Uout. min differ a little from constant component of signal Uout 0, their deviation should be measured in AC oscilloscope mode.

2.4. According to the measured values ​​determined using the formulas (5.6) - (5.8): a constant component of output signal, the amplitude of the variable component of output signal, detection coefficient and put their values ​​to the table. 5.2.

2.5. Calculate the theoretical values: constant component of output signal of synchronous detector using formula (5.4) detection coefficient of synchronous detector using formula (5.5).

Fo calculation use average value S1 = 1 A / V according to the approximation VAC of bipolar transistor (5.9).

The calculation results add to table. 5.2.

2.6. Compare the experimental and theoretical values ​​of constant component of output signal and detection coefficient of detector and make conclusions.

3. Explore the impact of phase shift φ between signal and oscillation on the output of heterodyne on the work of synchronous detector.

3.1. For investigation of the impact of phase shift φ on the work of synchronous detector, transmit on the base of bipolar transistor (Fig. 5.3) AM signal with the parameters: frequency of carrier oscillation fc=2 kHz; modulation frequency Fm = 5 Hz; modulation coefficient M = 0.5; amplitude of carrier oscillation Uin. c - according to the table. 5.3.

The parameters of heterodyne signal: frequency of oscillations Uh = 2 kHz, phase of oscillations φ- according to the table. 5.3; effective voltage Uh - according to the table. 5.3.

Table 5.3

Φ, grad                  
Uh, mV                  
Uin. c, mV                  
Uout. max, mV 9.59 9.59 5.83 5.83 5.83 5.83 9.59 9.59 5.83
Uout. min, mV -5.54 -4.16 -5.63 -4.35 -4.35 -4.35 -5.54 -5.54 -5.56
Uout 0, mV 2.025 2.715 0.1 0.74 0.74 2.04 2.025 2.025 2.025
Uout 1, mV 7.5 6.8 5.73 5.09 5.09 5.09 7.5 7.5 7.5
Kdet 1.5 1.36 1.146 1.018 1.018 1.018 1.5 1.5 1.5
Uout 0 theor, mV 32.81 32.81 35.63 35.63 35.63 35.63 32.81 32.81 35.63
Kdet. theor                  

 

3.2. Repeat measurement paragraphs 3.3-3.4 and their results add to your table 5.3.

3.3. Repeat calculations 3.5 and their results add to your table. 5.3.

3.4. Compare the experimental and theoretical values ​​of constant component of output signal and detection coefficient of detector and make conclusions.

 


Дата добавления: 2015-10-26; просмотров: 134 | Нарушение авторских прав


Читайте в этой же книге: Задание 5. Выполняется самостоятельно. | Quantitative determination of creatinine in urine by Jaffe color reaction (the method of Popper). | Titration of acids of gastric contents. | Shape of Mounted Specimens | Reflected Light Microscopy | Worked Example – Part 1 | Expected Error in Areal Analysis | Worked Example 1 |
<== предыдущая страница | следующая страница ==>
Worked Example 2| Colour reactions of proteins.

mybiblioteka.su - 2015-2025 год. (0.008 сек.)