Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатика
ИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханика
ОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторика
СоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансы
ХимияЧерчениеЭкологияЭкономикаЭлектроника

Пространственные координаты

Читайте также:
  1. Географические координаты
  2. Глава 6. Преобразования базисов и координат, криволинейные координаты
  3. Графоаналитический метод определения обобщенной скорости при силах, зависящих от обобщенной координаты
  4. Зависящих от обобщенной координаты
  5. Неравномерность установившегося движения и момент инерции маховика при силах, зависящих от обобщенной координаты
  6. ОБОБЩЕННЫЕ КООРДИНАТЫ
  7. Определим координаты и местоположение.

 

Для определения положения точки Q на поверхности эллипсоида в сфероидической геодезии используют системы пространственных координат: геодезические (B), приведенные (u) и геоцентрические (Ф) широты и геодезические долготы L, а также декартовые координаты x, y, z. На рисунке 3. 1 меридианный эллипс определяемой точки PQ. Из сравнения рисунков 3. 1 и 3. 2 замечаем следующие уравнения связи прямоугольных пространственных x, y, z и в плоскости меридианного эллипса (x), (y) координат

 

. (3. 13)

 

Подставляя сюда выражения для (x) и (y) из (3. 10) – (3. 12), несложно получить уравнения связи, например:

 

(3. 14)

(3. 15)

 

Здесь и в последующем мы используем общепринятое в геодезии обозначение выражения

,

 

которое называют первой основной функцией широты.

В настоящее время для решения геодезических задач все более используются спутниковые системы позиционирования, когда носителями координат являются созвездия специальных ИСЗ, находящихся на значительном удалении от поверхности земного эллипсоида. Если это удаление характеризуется геодезической высотой H, то уравнения связи пространственных прямоугольных и геодезических широт, долгот и высот принимают вид, следуемый из (3. 15), если к каждой из координат x, y, z прибавить проекции геодезической высоты H на соответствующие координатные оси

(3. 16)

Здесь принято обозначение: - отрезок Qn на рисунке 3. 1.- радиус первого вертикала. На практике возникает задача вычисления координат B, L, H по известным x, y, z. Рассмотрим вывод формул для решения этой задачи. Разделив второе уравнение (3. 16) на первое, получаем

(3. 17)

 

Возведя в квадрат первые два уравнения (3. 16) и найдя их сумму, получаем уравнение

 

, (3. 18)

которое совместно с третьим из (3. 16) приводит к уравнению

, (3. 19)

которое позволяет вычислить геодезическую широту методом последовательных приближений, которые будут сходящимися. Так, если требуется вычислить широту с точностью до 0. 0001// , достаточно трех приближений. Для удобства организации итерационных вычислений формулу (3. 19) можно преобразовать, переходя в правой части уравнения от sin B к tg B по формуле

 

.


Дата добавления: 2015-07-10; просмотров: 138 | Нарушение авторских прав


Читайте в этой же книге: РАБОЧАЯ ПРОГРАММА | Сущность задачи формирования систем координат на плоскости для ГИС. | ВВЕДЕНИЕ | ВЫСШЕЙ ГЕОДЕЗИИ | И СВЯЗЬ МЕЖДУ НИМИ | И СВЯЗЬ МЕЖДУ НИМИ | Классификация кривых на поверхности | Координатные линии на поверхности эллипсоида | Главные радиусы кривизны поверхности эллипсоида. | Радиус произвольного нормального сечения. Средний радиус кривизны поверхности эллипсоида. |
<== предыдущая страница | следующая страница ==>
Связь координат на меридианном эллипсе| В результате, получим после несложных преобразований

mybiblioteka.su - 2015-2024 год. (0.009 сек.)