Читайте также:
|
|
Доказательство. Будем доказывать утверждение теоремы только для натуральных чисел, ибо знак минус перед числом умеют ставить все умеющие ставить знак минус.
Пусть а > 1, р 1 - его наименьший простой делитель. Значит,
а = р 1 а 1 . Если, далее, а 1 > 1, то пусть р 2 - его наименьший простой делитель и а 1 = р 2 а 2 , т.е. а = р 1 р 2 а 2 , и так далее, пока а n не станет равным единице. Это обязательно произойдет, так как а > а 1 > а 2 ..., а натуральные числа с естественным порядком удовлетворяют условию обрыва убывающих цепей (во как выразился!). Имеем, таким образом,
a = p 1 p 2 ... p n , и возможность разложения доказана.
Покажем единственность. Ну пусть a = q 1 q 2 ... q n - другое разложение, т.е. p 1 p 2 ...p n = q 1 q 2 ...q s . В последнем равенстве правая часть делится на q 1 , следовательно, левая часть делится на q 1 . Покажем, что если произведение p 1 p 2 ...p n делится на q 1 , то один из сомножителей р k обязан делиться на q 1 .
Действительно, если q 1 | p 1 , то все доказано. Пусть q 1 не делит p 1 . Так как q 1 - простое число, то (q 1 , p 1 ) = 1. Значит найдутся такие
u, v О Z, что up 1 + vq 1 = 1. Умножим последнее равенство на p 2 ...p n , получим: p 2 ... p n = p 1 (p 2 ... p n ) u + q 1 (p 2 ... p n ) v. Оба слагаемых справа делятся на q 1 , следовательно, p 2 ...p n делится на q 1 . Далее рассуждайте по индукции сами.
Теперь пусть, например, q 1 | p 1 . Значит q 1 = p 1 , так как p 1 - простое. Из равенства p 1 p 2 ...p n = q 1 q 2 ...q s банальным сокращением моментально получим равенство p 2 ...p n = q 2 ...q s . Снова рассуждая по индукции, видим, что n = s, и каждый сомножитель левой части равенства p 1 p 2 ...p n = q 1 q 2 ...q n обязательно присутствует в правой и наоборот.
Ё
Дата добавления: 2015-08-27; просмотров: 46 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
Следующее наблюдение, отдавая дань уважения его автору - Евклиду, назовем теоремой. | | | Комплексные числа |