Читайте также:
|
|
Теорема 1. Если функции f(x) и g(x) непрерывны в точке x0, то их сумма φ(x) = f(x) + g(x) также есть непрерывная функция в точке x0.
Доказательство. Так как функции f(x) и g(x) непрерывны в точке x0, то исходя из определения можно написать . Тогда на основании свойств пределов будем иметь
.
Эта теорема справедлива для любого конечного числа слагаемых.
Следующие две теоремы докажите самостоятельно аналогично теореме 1.
Дата добавления: 2015-08-27; просмотров: 56 | Нарушение авторских прав
<== предыдущая страница | | | следующая страница ==> |
ВТОРОЙ ЗАМЕЧАТЕЛЬНЫЙ ПРЕДЕЛ | | | Теорема 3. Частное двух непрерывных функций есть функция непрерывная, если знаменатель в рассматриваемой точке не обращается в нуль. |