Студопедия
Случайная страница | ТОМ-1 | ТОМ-2 | ТОМ-3
АрхитектураБиологияГеографияДругоеИностранные языки
ИнформатикаИсторияКультураЛитератураМатематика
МедицинаМеханикаОбразованиеОхрана трудаПедагогика
ПолитикаПравоПрограммированиеПсихологияРелигия
СоциологияСпортСтроительствоФизикаФилософия
ФинансыХимияЭкологияЭкономикаЭлектроника

Второй замечательный предел

Множество значений функции. | Числовые последовательности | Свойства числовых последовательностей | Предел последовательности | Случай, когда последовательность не имеет предела. | Предел функции | Теорема 4 (свойства бесконечно малых функций). | Предел разности равен разности пределов, если каждый из них существует, т.е. | Где степень p - действительное число. | И мы доказали формулу 6. |


Читайте также:
  1. A) для передачи и распределения энергии
  2. I Сущность права . Определение его понятия .
  3. I. Определение фокусного расстояния собирающей линзы
  4. I. ПРЕДЕЛЫ
  5. I. ПРЕДЕЛЫ
  6. II. Дать определение анатомическим терминам.
  7. II. Определение фокусного расстояния рассеивающей линзы

Второй замечательный предел служит для раскрытия неопределенности 1 и выглядит следующим образом

Обратим внимание на то, что в формуле для второго замечательного предела в показателе степени должно стоять выражение, обратное тому, которое прибавляется к единице в основании (так как в этом случае можно ввести замену переменных и свести искомый предел ко второму замечательному пределу).

37)НЕПРЕРЫВНЫЕ ФУНКЦИИ
НЕПРЕРЫВНОСТЬ ФУНКЦИИ В ТОЧКЕ

Представление о непрерывности функции интуитивно связано у нас с тем, что её графиком является плавная, нигде не прерывающаяся линия. При рассмотрении графика такой функции y = f(x) мы видим, что близким значениям аргумента соответствуют близкие значения функции: если независимая переменная приближается к точке x0, то значение функции y = f(x) неограниченно приближается к значению функции в точке x0, т.е. к f(x0).

Дадим строгое определение непрерывности функции. Итак, пусть имеем функцию y = f(x).

Функция y = f(x) называется непрерывной в точке x0, если она определена в этой точке и в некоторой окрестности содержащей x0 и

. (1)

Таким образом, можно сказать, что функция непрерывна в точке x0, если выполнены 3 условия:

  1. она определена в точке x0 и в некоторой её окрестности;
  2. имеет предел при x → x0;
  3. этот предел равен значению функции в точке x0.

Формулу (1) можно записать в виде , т.к. . Это означает, что для того, чтобы найти предел непрерывной функции при x → x0, достаточно в выражение функции подставить вместо аргумента x его значение x0.

Пример: Докажем, что функция y = 3 x 2 непрерывна в произвольной точке x0. Для этого найдем .

Если функция y=f(x) непрерывна в каждой точке некоторого интервала (a; b), где a < b, то говорят, что функция непрерывна на этом интервале.


Дата добавления: 2015-08-27; просмотров: 50 | Нарушение авторских прав


<== предыдущая страница | следующая страница ==>
ПЕРВЫЙ ЗАМЕЧАТЕЛЬНЫЙ ПРЕДЕЛ| Непрерывные функции обладают следующими свойствами.

mybiblioteka.su - 2015-2024 год. (0.007 сек.)